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ABSTRACT

Autonomous driving is a growing research �ield, that still has many challenges. The main
challenges are related with decision‑making algorithms, human‑machine interaction and
acceptance in the technology. Also, the absence of human drivers in autonomous vehicles creates
a gap between users and pedestrians interacting with the vehicle. This article aims to de�ine
vehicle awareness, that eases the collaboration with users to improve safety and have a more
human‑like driving to increase the technology acceptance. In addition, our approach can be
extended to express vehicle social awareness towards the pedestrians and road users. Our
approach is based on affective computing. Affective computing is a tool to grant computers to
genuinely become intelligent and interact better with humans. Moreover, one of its components
is the generation of emotions, ofwhich twoof themost important elements are cognitive emotions
and primary emotions. The article’s objective is to design the model of a primary emotion
component, based on safety and that can be personalized depending on the driving style of the
user. This component is called the stress factor. The stress factor is correlatedwith the probability
of an accident. The vehicle stress factors contain parameters that canbepersonalized as a function
of a driving style. The stress factor is then attached to an existing cognitive emotion system (CarE)
in the automotive domain which we called CarEs. The results of the system behavior showed
promising results. The stress factor showed to be useful as a safety indicator. Also, the stress factor
can be personalized with the vehicle operation state component. In conclusion, the new system
known as CarEs generates vehicle awareness, by improving the vehicle’s collaboration with the
driver. The collaboration has a positive impact on the vehicle’s safety and comfort, and people’s
reliance on automated vehicles.
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1. INTRODUCTION
A growing research �ield in the automotive domain
is related to the autonomous vehicle. However,
the research mainly addresses innovation varying
from architecture models, sensing and perception
technology to human‑machine interactions Yurtsever,
et al. [1]. In addition, Yurtsever, et al. describe some
current challenges to achieve total automation such
as lack of accuracy in decision making algorithms,
communication technologies development, and human‑
machine interaction development. Similar conclusions
are drawn from Kang [2] where a speci�ic challenge is
related to the dif�iculty of a self‑driving car to make
decisions by matching traf�ic rules with contextual
information. Moreover, Coicheci, et al. [3] discusses
other challenges related to environmental aspects
affecting the functionality of sensors. Finally, a non‑
technical challenge has also been considered in Choi
et al. [4], where user trust is investigated and a
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conclusion stated that providing transparent infor‑
mation on the system’s operation improves user trust.
These challenges paint a picture of dif�iculties in
decision making, failure management and their impact
on the system. However, human‑machine interaction,
and trust are still open challenges for the current and
future levels of autonomy in vehicles.

Nevertheless, the development in the automotive
domain already had a signi�icant impact on human
society. Already, the autonomous vehicle promises to
increase the level of comfort, convenience, and safety
for its occupants. The absence of human drivers in
autonomous vehicles creates a gap in the way drivers
and vehicle occupants interact and communicate
with the vehicle. Moreover, the future vehicle will
be intelligent, expressing states of self and social
awareness, which makes the interaction with its
occupants, pedestrians, and road users differently
than using the traditional communication strategies.
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The degree of future autonomous vehicle acceptance
depends on its ability to express emotions based on its
sensor data, as a response to some type of input from
the physical environment and its internal components.

To address the vehicle’s emotional awareness a combi‑
nation of several popular approaches can be used. In
this article, we proposed an approach based on affective
computing. In this approach we aim to de�ine vehicle
awareness, so a vehicle can collaboratewith thedriver to
improve the driving style and safety. Furthermore, this
approach intends to be used by autonomous vehicles
to have a more human‑like driving to increase the
technology acceptance. Moreover, our approach can
be extended to express social awareness in a vehicle
towards the pedestrians and road users, which can have
a positive impact on traf�ic safety.

Affective computing studies and develops systems that
can recognize, express, generate emotions and have
emotional intelligence. According to Picard [5] emotions
are essential to have a computer that is genuinely
intelligent and can interact with humans. Also, Picard
de�ines a four‑component model to generate emotions.
The �irst component is emergent emotions. An example
of emergent emotions is the sad face on a Windows OS
computer after crashing. Primary emotions is the second
component. Primary emotions are innate to humans.
Their function is to trigger a fast and reactive response
in dangerous situations. Cognitive emotions, the third
component, are generated using cognitive reasoning.
Finally, emotional experience, the fourth component,
requires the recognition of the emotional state and the
acknowledgment of how the emotions affect the system.

Moreover, according to Kraus et al. [6], the implemen‑
tation of emotions in an autonomous vehicle can
enhance acceptance and comfort. Also, Chen et al. [7]
designed a framework of vehicle emotion system (VES)
to estimate the vehicle health condition by considering
different factors including driving habit, maintenance
of the vehicle, road condition and usage frequency and
kilometers traveled by the vehicle. By implementing
emotions in a vehicle, positive effects are observed on
its life‑span, appearance, security and comfort.

Nonetheless, the previous studies have not tackled
the design of a primary emotion component based
on the safety of the driver. Therefore, the primary
goal of our research is to design a primary emotion
component for an emotion vehiclemodel.Weperformed
an investigation of the emotional vehicle model CarE
[8], and we extend it by adding a second Picard’s
components for an emotion generation machine. The
primary emotion is known as the stress factor, which
computes the probability of an accident based on the
vehicle’s internal and external inputs. The stress factor
conceptualization is motivated by human stress, which
cannot be eliminated or decreased unless the stressor

(external or internal disturbance) is removed. Finally,
this article aims to personalize the stress computation,
particularly, in the vehicle’s operation state component
(VOS). The personalization of the stress is implemented
by introducing inputs which depend on the user’s
driving style. The stress factor also interacts with the
cognitive emotions computation to personalize them.

To test our approach, a framework was designed
and tested using MATLAB/Simulink, and a 3D virtual
environment developed in the Unity Game Engine. The
tests showed promising results on the use of the stress
factor to extend the computation of different emotions
as a function of speci�ic scenarios and the personality of
the driver. An emoji is used to express emotions to the
driver in a graphical method, also all the emotions are
communicated to the user in bar graphs.

The structure of the article is as follows. First, the
System architecture section describes the system
modules: Input, Health and Emotion modules, and
the construction of the Stress and Scenario detection
modules. Second, the CarEs testing and expected results
section describes the testing scenarios, software used
and the expected results. Third, the Results section
describes the results obtained on each test simulation.
Finally, the section Discussion and conclusion discusses
and concludes the �indings of this article.

2. BACKGROUND

2.1. Emotions in Robotics

There aremany application domains inwhich robots are
utilized [9], bringing the interactions with humans onto
a more natural level by expressing emotions [10,11].
As presented in many studies, the robots expressing
emotional states are easily integrated, trusted and
accepted by humans in their deployment in our daily
lives [12,13].

Wang et al. [14] investigated the emotional expressions
of non‑humanoid robots in the past ten years,
summarizing core aspects including emotion models,
output modalities, evaluation measures, as well as user
perceptions. However, more than half of the Wang et al.
reviewed articles employed basic emotions, which were
mostly derived from Ekman’s six emotions [15].

2.2. Emotions in Autonomous Vehicles

Al‑Shihabi et al. [16] de�ined a framework for Modeling
Human‑likeDrivingBehaviors ForAutonomousVehicles
in Driving Simulator, which allows modeling different
kinds of human driving behavior for autonomous
vehicleswithin a driving simulator. Themain conclusion
was that the deployment of autonomous vehicles with
their human‑like driving characteristicswouldmake the
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simulator’s virtual driving environment more realistic
and less predictable.

Hecker et al. [17] extended the objective of autonomous
driving models from accurate driving to accurate,
comfortable, and human‑like driving. The driving
models were mathematically formulated, and then
translated into one neural network which is end‑to‑end
trainable. However, they did not consider emotions in
their approach.

Choi et al. [4] examined the user’s adoption aspects of
an autonomous vehicle, as well as to investigate what
factors drive people to trust an autonomous vehicle.
The results demonstrated that perceived usefulness and
trust are major important determinants of intention to
use autonomous vehicles.

Molnar et al. [18] found that driving‑speci�ic control pre‑
ferences were signi�icantly related to the reported trust.
The authors found evidence that trust in automated
driving, was an important component of acceptance of
the technology.

2.3. CarE Model

The emotional vehicle model CarE from Chouhan [8]
is a system that calculates emotions as a function of a
cognitive appraisal. CarE implemented the Emmodel by
Reilly [19] to generate emotion. Em model is based on
OCC theory [20], which can describe emotions and their
intensities using a series of equations and algorithms.
The Em model simpli�ies some of the computations of
the OCC theory.

CarE is capable of computing 22 emotions, its require‑
ment as input are goals, agents, events and actions. The
input allows CarE to interpret the data and understand
the situation to generate an emotion. The interpretation
is based on a database (DB)which concentrates possible

goals, agents, events and actions. They need to be identi‑
�ied and then process.

A goal is a speci�ic objective in a driving circumstance.
For example, if there is a leading vehicle and the
overtaking lane is free, the objective is to overtake the
leading vehicle. There are two important parameters
in the goal’s DB: the desirability and the likelihood of
the goal. First, in the model, the desirability is split into
two parts: the DoS (Desirability of Success) and the DoF
(desirability to not fail). The DoS is the desired level of
success in the goal, while DoF determines the level to
not fail. The likelihood is also split in two parts: LoS
(likelihood of success) and LoF (likelihood of failure). In
CarEmodel the likelihood ismodeled as complementary
variables, following the equation LoS + LoF = 1.

An agent is de�ined as the entity that performs the
actions causing the event, e.g. the autonomous vehicle
or a pedestrian. An important agent’s parameter is the
appealingness, which de�ined the level of attractiveness
of that agent to the CarE, they can have negative or
positive values.

An event is de�ined as the entity’s judgment on a
situation, according to Chouhan [8] the judgment should
be independent to the entity’s believes. Its relevant
parameters are the dLoS (change of LoS) and dLoF
(change of LoF. These two parameters compute the
change on the likelihood once the event has taken place.

An action is de�ined as the resulting act in the
event. Its parameters are the praiseworthiness and
the responsibility. Praiseworthiness is the standardized
appraisal considered by the entity performing that
action. In CarE the praiseworthiness is of moral nature,
based on the agent’s responsibility perception of the
performed action.

The four previously mentioned inputs are processed
in a rule‑based manner. For instance, Fig. 1 shows the

Figure 1. Algorithm example to compute emotions [8].
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Figure 2. 22 emotions mapped to six basic emotions [8].

interaction of an action, event, and agent to compute
an emotion. First, the action is detected, then the
event’s change of LoS (dLoS) and change of LoF
(dLoF) is evaluated. Depending on its values then the
agent is evaluated to generate positive (grati�ication
or gratitude) or negative (remorse or anger) emotions.
Equations de�ined in the Em model [19] are used to
compute the intensity of the emotions.

For example, Fig. 1 shows how the algorithm computes
the grati�ication emotion, its intensity is calculated
as speci�ied in Eq. (1). All the equations needed to
compute the intensity of each emotion can be found in
Chouhan [8].

gratification.intensity = goal.DnF ∗ action.Responsibility
(1)

Em model mapped 22 emotions to six basic emotions.
Fig. 2 shows how each of the 22 emotions are mapped
to the six basic emotions de�ined in the Em model.
The rules to map the 22 emotions are described in
Chouhan [8].

CarE is composed of �ive modules. Fig. 3 shows the high
level architecture of CarE. A summary of CarE’smodules
is presented next.

1. Input: It processes data coming from external
systems, the input is then transformed into states,
they are known as behavioral variables. Some data is
not transformed into state, such as the data of speed
or location of the vehicle.

2. Health: It computes the health factor as a function of
the states variables and the stress factor. TheHF is an
indicator of the overall system’s health.

3. Emotion: This module computes the emotions and
their intensity, as explained previously.

4. Mood: Its input is the intensity of the 22 emotions
from the EmotionModule. It analyses all the emo‑
tions and computes its mood, which is the ratio of the
intensity of the positive emotions over the negative
emotions.

5. Mapping: It maps the 22 emotions into the 6 basic
emotions. The mapping rules can be observed in [8].

3. CarEs ARCHITECTURE
CarEs system was developed using the MDSE
methodology SYSMOD [21], starting with the system’s
requirements elicitation, and continuing with the
realizations of the use cases. The system’s main
requirement for the primary emotion is considered to
be passengers’ safety, based on a mathematical model
of an accident probability. Also, the system required to
consider the stress resiliency of the driver. Therefore,
a component related to the driving style is design as
a function of the adaptability to stress while driving.
In other words, if a driver can drive at high speeds is
because the driver is more resilience to stress due to
speed, and this is re�lected in the model.

The architecture of CarEs is presented in Fig. 4. CarEs
has two extra modules, which are connected with the
CarE system: Stress and Scenario Detection modules.
In addition, CarE modules Input, Health, Emotion, and
Driving simulationwere modi�ied.

Figure 3. Components and data flow of CarE system.
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Figure 4. Schematic representation of the CarEs system.

Before explaining the functionalities of each module,
Subsection 3.1 describes the parameters used to
personalized three different driving styles, that are
fundamental to construct a human‑like driving machine
or driving assistant. The following subsections describe
the modules changes and newmodules features.

3.1. Driving Style Parameters

The driving style is de�ined by Marina Martinez
et al. [22] as “the way a driver operates the vehicle
controls in the context of the driving scene and
external conditions”. Thus, the driving style plays an
essential role in the safety and performance of the
vehicle.

In autonomousdriving, thedriving style canaid to adjust
the vehicle’s operation to the drivers needs. Eachdriving
style has its own “traits” related to the operation of the
vehicle. There aremany driving style classi�ications [23–
25]. We have chosen a classi�ication based on Dörr et al.
[25] approach,which considers three style types: sporty,
normal, and calm. This classi�ication correlates the
aggressiveness of the driving stylewith parameters such
as average speed. If a driving style ismore aggressive the
average speed is higher.

The parameters de�initions and values used to
characterize a normal driver style are extracted from
Bonsall et al. [26]. All the parameters selected are shown
in Table 1.

The parameters for the calm and sport styles were
computed assuming the calm style is less aggressive
than the normal, and the sporty style is more aggressive
than the normal [25]. The generation of the parameters
aims to observe the behavior of the system for each
style. Hence, the parameters for the calm personality
are decreased 50% from the normal driving style, while
the sporty driving style is increased 50% from normal
driving style.

Parameter Unit Values

Speed (V̄ ) m/s
Calm = 6.9
Normal = 13.9
Sport = 20.8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Headway (Hw) s
Calm = 3
Normal = 2
Sport = 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acceleration rate (ārate) m/s2
Calm = 0.6
Normal = 1.2
Sport = 1.8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Deceleration rate (d̄arate) m/s2
Calm = 0.5
Normal = 1
Sport = 1.5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Critical gap (Gc ) s
Calm = 5.25
Normal = 3.5
Sport = 1.75

Table 1. Driver style parameters for different styles.

3.2. Input Module

In CarE [8] system the Input module has �ive classes:
a) Drivers health – variables related to driver’s health,
b) Driving style – variables related to driver’s vehicle
operation, c) Vehicle health – variables related to the
vehicle’s components state, d) Vehicle competency –
variables related to vehicle’s capability for autonomous
driving, e) Environment condition – variables related
to external environmental conditions. New behavioral
variables were added in the vehicle health class, which
follows EU road‑worthiness directive [27].

In addition, a new de�inition to rank the behavioral
variables was designed. The new rank de�inition
classi�ies the behavioral variables with a different
prioritization then in CarE [8]. First priority is their
impact on safety with the rank of 1 and weight of 1,
second is performance with a rank of 2 and weight of
1/2, third is driver’s comfort with a rank of 3 andweight
of 1/3, and fourth is driver’s trustworthinesswith a rank
of 4 and weight of 1/4.
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Each variable was classi�ied by performing a literature
review on its impact on each ranking class. For example,
the breaking equipment state is classi�ied as a safety
concern by [27]. This new ranking is used to compute
the health module.

3.3. Health Module

The changes in the health factor (HF) are related to the
manner the stress factor (SF) in�luences its computation.
The values of the stress factor are within the range of
0 to 1. To compute the new HF affected by the stress
(HFs), Eq. (2) is used.

HFs = HF − (HF − 1)SF (2)

Eq. (2) shows that the SF can only affect negatively
the HF, but the SF cannot reduce the value of the
health factor below 1. Thus the stress factor in�luence
decreases in accordance with the proximity of the HF
with its lowest value. The value of the health factor
affected by stress (HFs) is an input to the emotion
module.

3.4. Stress Modules

The stress factor is conceptualized as the probability
of an accident, considering four components: (1) the
vehicle operation state (VOS), related to the driving style
of the user; (2) vehicle’s health; (3) the capability of the
vehicle to autonomousdriving and the (4) environmental
conditions.

3.4.1. Vehicle Operation State (VOS) Stress

We proposed two components of VOS stress (SFvos),
the probability of losing control and the probability
of collision with another vehicle. This article does
not compute the non‑moving collision probability, be‑
cause there are many non‑moving objects in the 3D
environment. Thus, the objects detection signal gene‑
rates noise making the computation inaccurate. Also,
the behavior of a moving object becomes a priority in
a traf�ic simulation due to their unpredictable behavior.

The component probability of loss control computation
is based on Eboli et al. [28] in which a methodology is
presented to identify safe and unsafe conditions zones
as a function of the vehicle’s speed and acceleration.
Eboli et al. de�ine the vehicle generated forcemagnitude
(Fs) as a function of its acceleration, and the maximum
friction force magnitude of the tires with the road (FR)
as a function of the vehicle’s speed [29]. Then, it de�ines
the safe and unsafe zones as follows:

• if Fs < FR the vehicle is in the safe driving zone.
• if Fs = FR the vehicle is at the limit of the safe driving

zone.
• if Fs > FR the vehicle is in a unsafe driving zone.

Then, we derived the risk of losing the control indicator
(Rlc) of the vehicle in Eq. (3):

Rlc = FR
Fs

(3)

Where if Rlc > 1 then the vehicle is in the safe zone, and
if Rlc < 1 then the vehicle is in the unsafe zone.

Lastly, to model the Rlc as a probability, an exponential
pdf (probability density function) is used. The
exponential pdf is used because it has the memoryless
property, and we assume that every driving operation
states are independent. This assumption is valid
because we are computing the Rlc with instantaneous
acceleration and speed. The probability measurement
is called the stress factor of control loss (SFCL).

SFCL = μe
(
− Rlc

μ

)
(4)

Where μ is the mean value of the risk of losing control
(Rlc), which is a function of themean rate of acceleration
(ārate) and the mean speed (V̄) de�ined in Section 3.1.

The second (VOS) stress component is themoving object
collision probability (SFcol). The de�inition of Time to
Collision (TTC) [30] is used to compute the (SFcol).

According to the de�inition of TTC, when the TTC
decreases the risk of a collision increases. Furthermore,
according to Elvik [31], the increase in speed can in‑
crease exponentially the risk of an accident. Hence, SFcol
is modeled as an exponential pdf, and it is a function of
the vehicle’s speed. Eq. (5) describes the SFcol:

SFcol = Gce−TTC/Gc (5)

WhereGc is the critical gap de�ined for each driving style
in Section 3.1.

The total VOS stress factor (SFvos) is model as amutually
inclusive probability and de�ined in Eq. (6).

SFvos = SFlc + SFcol − SFlcSFcol (6)

3.4.2. Failure Stress

We propose to use the theory of predicted maintenance
tomodel the failure stress. Themethodology to predict
a failure is based on Sha�iee et al. [32], where for each
vehicle’s component (j), the variables of a critical level
of degradation (Dj), degradation rate (λj), mean and
standard deviation distance for each component (μj,
σj) needs to be de�ined. The values of the variables
were extracted from a literature review [33–38]. For the
components where these values were not found, this
article assumed that their Dj, λj, μj and σj were equal
to the parameters of the vehicle life expectancy. This
article assumes the degradation rate (λj) is linear, this
assumption allows the computation to be in real‑time.
Although a more realistic approach should be further
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Each variable was classi�ied by performing a literature
review on its impact on each ranking class. For example,
the breaking equipment state is classi�ied as a safety
concern by [27]. This new ranking is used to compute
the health module.

3.3. Health Module

The changes in the health factor (HF) are related to the
manner the stress factor (SF) in�luences its computation.
The values of the stress factor are within the range of
0 to 1. To compute the new HF affected by the stress
(HFs), Eq. (2) is used.

HFs = HF − (HF − 1)SF (2)

Eq. (2) shows that the SF can only affect negatively
the HF, but the SF cannot reduce the value of the
health factor below 1. Thus the stress factor in�luence
decreases in accordance with the proximity of the HF
with its lowest value. The value of the health factor
affected by stress (HFs) is an input to the emotion
module.

3.4. Stress Modules

The stress factor is conceptualized as the probability
of an accident, considering four components: (1) the
vehicle operation state (VOS), related to the driving style
of the user; (2) vehicle’s health; (3) the capability of the
vehicle to autonomousdriving and the (4) environmental
conditions.

3.4.1. Vehicle Operation State (VOS) Stress

We proposed two components of VOS stress (SFvos),
the probability of losing control and the probability
of collision with another vehicle. This article does
not compute the non‑moving collision probability, be‑
cause there are many non‑moving objects in the 3D
environment. Thus, the objects detection signal gene‑
rates noise making the computation inaccurate. Also,
the behavior of a moving object becomes a priority in
a traf�ic simulation due to their unpredictable behavior.

The component probability of loss control computation
is based on Eboli et al. [28] in which a methodology is
presented to identify safe and unsafe conditions zones
as a function of the vehicle’s speed and acceleration.
Eboli et al. de�ine the vehicle generated forcemagnitude
(Fs) as a function of its acceleration, and the maximum
friction force magnitude of the tires with the road (FR)
as a function of the vehicle’s speed [29]. Then, it de�ines
the safe and unsafe zones as follows:

• if Fs < FR the vehicle is in the safe driving zone.
• if Fs = FR the vehicle is at the limit of the safe driving

zone.
• if Fs > FR the vehicle is in a unsafe driving zone.

Then, we derived the risk of losing the control indicator
(Rlc) of the vehicle in Eq. (3):

Rlc = FR
Fs

(3)

Where if Rlc > 1 then the vehicle is in the safe zone, and
if Rlc < 1 then the vehicle is in the unsafe zone.

Lastly, to model the Rlc as a probability, an exponential
pdf (probability density function) is used. The
exponential pdf is used because it has the memoryless
property, and we assume that every driving operation
states are independent. This assumption is valid
because we are computing the Rlc with instantaneous
acceleration and speed. The probability measurement
is called the stress factor of control loss (SFCL).

SFCL = μe
(
− Rlc

μ

)
(4)

Where μ is the mean value of the risk of losing control
(Rlc), which is a function of themean rate of acceleration
(ārate) and the mean speed (V̄) de�ined in Section 3.1.

The second (VOS) stress component is themoving object
collision probability (SFcol). The de�inition of Time to
Collision (TTC) [30] is used to compute the (SFcol).

According to the de�inition of TTC, when the TTC
decreases the risk of a collision increases. Furthermore,
according to Elvik [31], the increase in speed can in‑
crease exponentially the risk of an accident. Hence, SFcol
is modeled as an exponential pdf, and it is a function of
the vehicle’s speed. Eq. (5) describes the SFcol:

SFcol = Gce−TTC/Gc (5)

WhereGc is the critical gap de�ined for each driving style
in Section 3.1.

The total VOS stress factor (SFvos) is model as amutually
inclusive probability and de�ined in Eq. (6).

SFvos = SFlc + SFcol − SFlcSFcol (6)

3.4.2. Failure Stress

We propose to use the theory of predicted maintenance
tomodel the failure stress. Themethodology to predict
a failure is based on Sha�iee et al. [32], where for each
vehicle’s component (j), the variables of a critical level
of degradation (Dj), degradation rate (λj), mean and
standard deviation distance for each component (μj,
σj) needs to be de�ined. The values of the variables
were extracted from a literature review [33–38]. For the
components where these values were not found, this
article assumed that their Dj, λj, μj and σj were equal
to the parameters of the vehicle life expectancy. This
article assumes the degradation rate (λj) is linear, this
assumption allows the computation to be in real‑time.
Although a more realistic approach should be further

explored. Moreover, we used the gamma probability
density function to model the probability of survival.

Sha�iee et al. [32] computed the survival function of the
system (Fsys). Eq. (7) de�ines the failure stress (SFf ) of
the system.

SFf = 1 − Fsys (7)

3.4.3. Competency Stress

According to Underwood et al. [39], the inattention
is important contributor to a vehicle accident. In
consequence, the ability to detect objects is a major
contributor for accident probability. Similarly, the
detection of objects from an autonomous vehicle plays
an important role in the capability of autonomous
driving. Hence, we propose a methodology to compute
the competency stress (SFc) considering the object
recognition variable as a central element and it is
conceptualized as Probability to not recognized and
object (PNRO).

Other vehicle’s systems can enhance the object
recognition task. Each of these systems (j) enhance the
object recognition task by an improvement percentage
(PIj). Therefore, if any of the systems is enabled for
the object recognition task, the PNRO would decrease.
The systems that can enhance the object recognition
task are the vehicle to vehicle communication (V2V),
the vehicle to infrastructure communication (V2I), the
digital data connectivity and capability for cooperative
maneuvering and sensing.

The competency stress (SFc) computation is shown in
Eq. (8), de�ining how each PIj affects the (PNRO) of the
system from N subsystems.

SFc = PNRO
N∏
1

(1 − PIj) (8)

Consequently, the uncertainty of the object recognition
decreases if the subsystem j is enable in the system. In
the scenario that the sub‑system is not enabled (PIj = 0)
then it does not affect the (PNRO).

3.4.4. Environmental Stress

Ifthikar et al. [40] proposed the design of a system that
can detect road accident’s hot spots. Ifthikar et al. claims
the approach can be extended to any road. Therefore,
we propose that the environmental stress is computed
using as a central variable theProbability of accident in a
speci�ic road P(acc) [41]. Other factors such as weather
conditions or surface type can increase the probability
of an accident.

We proposed a mutually inclusive probabilistic model
for the environmental stress (SFenv) computation. Each

factor contribution j is named probability increase of
accident of factor j (P(AI)j). Thus, the algorithm to
compute SFenv is:

1. i = 0.
2. if i = 0 then Ptemp = PAcc.
3. i = i+ 1.
4. Ptemp = Ptemp + P(AI)i − PtempP(AI)i
5. if i = 4 then SFenv = Ptemp else go back to 3.

The probability of an accident on the road (P(acc)) is
modeled as a normal pdf, and its mean and standard
deviation were extracted from [42] data. To compute
the SFenv, four factors are considered as following: i =
1 is the surface condition, i = 2 is the surface type,
i = 3 is the weather condition, i = 4 is the time of
the day.

3.5. Total Stress Factor

The stress factor (SFtot) is modeled as a mutually
inclusive probability of its components.

The steps are described in Eqs. (9) and (10). The
equation that computes the stress factor is presented in
Eq. (11).

SFf−C = SFf + SFc − (SFf )(SFc) (9)
SFf−C−Env = SFf−C + SFenv − (SFf−C)(SFenv) (10)

SFtot = SFf−C−Env + SFvo − (SFf−C−Env)(SFvo)
(11)

The stress factor can only have values within the range
of 0 and 1, as stated in the Eq. (11).

3.6. Scenario Detection Module

This module can detect �ive different scenarios.
The vehicle with the CarEs implemented is called
ego‑car. Each scenario has start and end triggers.
The implementation of the scenario detection module
follows these rules. The �ive scenarios are the following:
1) driving in a straight line, 2) lane change, 3) curve
handling, 4) vehicle following, 5) overtaking.

The straight line scenario considers the ego‑car driving
by itself in the same lane. The initial trigger is the start
of the vehicle (speed = 0), or the �inalization of another
scenario. The end of this scenario happens when the
ego‑car has a starting trigger from another scenario.

In scenario lane change, the starting trigger is
considered to be when the ego‑car has touched the lane
marker. The lane change end trigger is when the vehicle
has touch the lane market with the opposite rear set of
tires [43].

The curve handling scenario has a speci�ic starting
trigger, which happens when the street starts changing
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from a straight line into a curved line. Using as a
reference the direction of the vehicle, the angle of the
curve could be positive, making a left turn, or negative,
making a right turn. The end trigger happens when the
street angle is in line, zero degrees with the ego‑car.

The vehicle following scenario happens when the
ego‑car has a leading vehicle. The starting point has
three triggers. First, another car must be in the same
lane as the ego‑car. Second, the leading vehicle must be
in the same direction. And third, the ego‑car must be
located behind the leading vehicle. The end trigger can
be either when the leading vehicle is no longer in the
same lane or the leading car change road.

The overtaking scenario has many variants. In this
article only one variantwas considered. This variant has
the same three starting triggers as the scenario vehicle
followingwith an extra trigger, which is the lane change
of the ego‑car with the intention of leaving the leading
vehicle behind [44]. This variant assumes that there
is only the leading car and the ego‑car present in the
scenario.

3.7. Emotion Module

The EmotionModule is composed of two sub‑modules:
Intensity Module and Decay Module. Intensity
Module generates intensity values of emotions based
on its input parameters. These inputs are Goal ID,
Action ID, Event ID, and Agent ID. For the computation
of the emotions, a database relates those ID’s to its
parameters and computes the intensity values of 22
emotions. The Decay Module takes the output of the
Intensity Module as input and decreases the intensity
values of the emotions with time. Two important
parameters in the database of a goal is the likelihood
of success (LoS) and the likelihood of failure (LoF).
These parameters contain the probability of the goal
being successful or failing. However, the parameters are
complementary implying that LoS + LoF = 1. In CarE
[8], the parameters were �ixed.

Each scenario is correlated with a goal and an agent in
thedata based. This relationship is shown inTable 2. The
relationships between the scenarios, events, and actions
are shown in Table 3.

Scenario Goal Agent

Driving in a straight line Stay under the speed limit Me
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lane change Perform proper lane change Me
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Curve handling Perform proper curve handling Me
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Following a vehicle Maintain proper distance with agents Vehicle in front
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overtake
Perform proper lane change
Maintain proper distance with agents
Avoid collision with vehicles

Vehicle in front

Table 2. Relationship between scenarios, goals and agents.

Scenario Event Action

Driving in a straight line 1. Staying under the speed limit
2. Over-speeding detected

1. I stayed under the speed limit
2. I over-speed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lane change 1. Proper lane change performed
2. Improper lane change performed

1. I performed a proper lane change
2. I performed an improper lane change

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Curve handling 1. Proper curve handle performed
2. Improper curve handle performed

1. I performed a proper curve handle
2. I performed an improper curve handle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Following a vehicle

1. Proper distance maintained
with agents

2. Improper distance maintained
with agents

1. I maintained a proper distance
with agents

2. I maintained an improper distance
with agents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overtake

1. Proper lane change performed
2. Improper lane change performed
3. Proper distance maintained
with agents

4. Improper distance maintained
with agents

5. No collision detected
6. Collision detected

1. I performed a proper lane change
2. I performed an improper lane change
3. I maintained a proper distance
with agents

4. I maintained an improper distance
with agents

5. I detected no collision
6. I detected a collision

Table 3. Relationship between scenarios, events and actions.
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from a straight line into a curved line. Using as a
reference the direction of the vehicle, the angle of the
curve could be positive, making a left turn, or negative,
making a right turn. The end trigger happens when the
street angle is in line, zero degrees with the ego‑car.

The vehicle following scenario happens when the
ego‑car has a leading vehicle. The starting point has
three triggers. First, another car must be in the same
lane as the ego‑car. Second, the leading vehicle must be
in the same direction. And third, the ego‑car must be
located behind the leading vehicle. The end trigger can
be either when the leading vehicle is no longer in the
same lane or the leading car change road.

The overtaking scenario has many variants. In this
article only one variantwas considered. This variant has
the same three starting triggers as the scenario vehicle
followingwith an extra trigger, which is the lane change
of the ego‑car with the intention of leaving the leading
vehicle behind [44]. This variant assumes that there
is only the leading car and the ego‑car present in the
scenario.

3.7. Emotion Module

The EmotionModule is composed of two sub‑modules:
Intensity Module and Decay Module. Intensity
Module generates intensity values of emotions based
on its input parameters. These inputs are Goal ID,
Action ID, Event ID, and Agent ID. For the computation
of the emotions, a database relates those ID’s to its
parameters and computes the intensity values of 22
emotions. The Decay Module takes the output of the
Intensity Module as input and decreases the intensity
values of the emotions with time. Two important
parameters in the database of a goal is the likelihood
of success (LoS) and the likelihood of failure (LoF).
These parameters contain the probability of the goal
being successful or failing. However, the parameters are
complementary implying that LoS + LoF = 1. In CarE
[8], the parameters were �ixed.

Each scenario is correlated with a goal and an agent in
thedata based. This relationship is shown inTable 2. The
relationships between the scenarios, events, and actions
are shown in Table 3.

Scenario Goal Agent

Driving in a straight line Stay under the speed limit Me
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lane change Perform proper lane change Me
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Curve handling Perform proper curve handling Me
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Following a vehicle Maintain proper distance with agents Vehicle in front
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overtake
Perform proper lane change
Maintain proper distance with agents
Avoid collision with vehicles

Vehicle in front

Table 2. Relationship between scenarios, goals and agents.

Scenario Event Action

Driving in a straight line 1. Staying under the speed limit
2. Over-speeding detected

1. I stayed under the speed limit
2. I over-speed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lane change 1. Proper lane change performed
2. Improper lane change performed

1. I performed a proper lane change
2. I performed an improper lane change

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Curve handling 1. Proper curve handle performed
2. Improper curve handle performed

1. I performed a proper curve handle
2. I performed an improper curve handle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Following a vehicle

1. Proper distance maintained
with agents

2. Improper distance maintained
with agents

1. I maintained a proper distance
with agents

2. I maintained an improper distance
with agents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Overtake

1. Proper lane change performed
2. Improper lane change performed
3. Proper distance maintained
with agents

4. Improper distance maintained
with agents

5. No collision detected
6. Collision detected

1. I performed a proper lane change
2. I performed an improper lane change
3. I maintained a proper distance
with agents

4. I maintained an improper distance
with agents

5. I detected no collision
6. I detected a collision

Table 3. Relationship between scenarios, events and actions.

Figure 5. Testing scenarios. A: Driving in straight line, B: Curve handling, C: Lane change, D: Following vehicle, E: Overtaking.

This article proposed the use of the SF as a decision
variable to identify which event and action are triggered
within the scenarios. Furthermore, we implemented the
SF to replace the �ixed value of the likelihood of failure
(LoF). Particularly for the scenarios: lane change, curve
handle, and following a vehicle. The threshold to decide
between events is SF = 0.5. The threshold rationale
is considering that if SF < 0.5 and LoF = SF then
LoS > 0.5 thus there is more probability for success
than for failure, if SF > 0.5 and LoF = SF then Lo <

0.5 thus there is less probability for success than for
failure. In the case SF = 0.5 then the chosen event is
thenegative one. For example, in the goalperformproper
curve handle there are twopossible events: proper curve
handle and improper curve handle. If the SF >= 0.5
then the event selected should be an improper curve
handle.

For the scenario driving in a straight line, the decision
variable is based on the detection by the CarEswhether
the maximum legal speed limit is surpassed, in which
case the event over‑speeding is detected.

The scenario Overtake considers six events. Each event
depends on the sub‑scenario detected. Thus, the event
and action selected follow the same rules as for each sub‑
scenario. If the ego‑car has collided the identi�ication
variable is the detection of a collision, thus the possible
events and actions are no collision detected or collision

detected. Each goal, event, action, and agents are in a
database consisting of all essential information for the
Intensity Module.

4. CarEs TESTING AND EXPECTED
RESULTS

This section describes the system testing methodology.
Subsection 4.1 presents a simulation environment for
testing of the CarEs system. In addition, Subsection 4.2
describes the expected results of the emotions
interaction with the stress factor.

4.1. CarEs System Testing

The setup test contains two components, the Matlab/
Simulink and the Unity Game Engine. The communi‑
cation between the two is based on the TCP/IP
protocol. The CarEs modules are implemented in
Matlab/Simulink. A 3D prototype for the visualization
of the �ive driving scenarios is implemented in the
Unity Game Engine. Fig. 5 shows snapshots of the test
scenarios.

The testing consists of �ive different scenarios presented
in Table 2. These scenarios are design to test the
behavior of the CarEs concept. The �irst three scenarios
involve only the ego‑car. The 4th and 5th scenarios
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involve the participation of two vehicles, the leading
vehicle and the ego‑car. For the �irst four scenarios, the
vehicles are driven for a total of 2.5 [km]. To perform
these tests, a speci�ic path was created for each vehicle.
In the test of the goal Stay under the speed limit, to trigger
the event under the speed limit, the speed limitwas set to
60 [km/h], to trigger the event over the speed limit, the
speed limit was set to 50 [km/h].

For all the tests, the torque of the vehicle is 530 [Nm].
In the scenario of the car following, the leading vehicle
torque is 480 [Nm]. Also, the ego‑car is set to approach to
leading vehicle to a maximum of 4.5 [m], and no further
away than 8 [m]. The gap interval allows the test of
object collision probability (SFcol).

Statistical analysis is performed for all the collected
data. For each goal and event the values of emotions
and stress are collected with �ix time rate (0.2[s]). The
mean and variance of the emotions and stress value are
reported.

These tests aim to investigate the behavior of the stress
and the personalizing of the SF . Hence, this set of tests is
designed to evaluate the stress factor as a decision index
to differentiate between events for the computation of
emotions.

The second set of tests aims to observe the differences
in stress and emotions values generated on the 3 types
of driving styles (DS). Our hypothesis is that the DS calm
will experience the stress in a higher fashion than the
others, as such the sport will compute less stress in any
given event.

4.2. Expected Results

The stress factor is designed to in�luence emotions,
and as an danger’s indicator. Thus, we expect that in
goals where the stress factor has less in�luence, e.g.,
where the LoS is not dynamic (e.g., speed limit goal),

then emotions will not greatly be in�luenced. However,
some negative emotions such as fear or sadness may
appear when actual danger is not detected. Therefore,
we expect that a goal with a dynamic LoS (e.g., curve
handle goal)will showresults as a functionof situational
danger, hence if the stress factor is high then negative
emotions are high. Hence, these tests can show if the
stress factor has a value as a situational awareness
indicator.

To understand the in�luence of the stress factor (SF),
we need to compare the emotions generation in the
same scenarios but with a different de�inition of LoF
(likelihood of failure). The stress factor should have a
bigger in�luence when Lof is a function of the stress
factor (LoF = SF). Therefore, we expect that in a
dynamic LoF the emotions have been in�luenced greater,
e.g., if SF is low positive emotions are greater in dynamic
LoF than �ixed LoF .

Section 3.1 introduces the driving styles. These styles
are characterized by a series of parameters. Considering
the de�initions stated in Section 3.1, a calm driving style
is characterized to drive less aggressively than the other
two driving styles, which translates into amore cautious
driver. Therefore, in situations where we expect that
bad decisions would be taken, e.g., improper distance
or curve handling, bad emotions are expected to be
more intense for the calm, and the least intense for
the sporty driving style. Furthermore, also, we expect
that the stress factor is greater in calm than in normal,
and greater in normal than in sporty drive styles. This
hypothesis is related to the resilience as a function of the
aggressiveness of the driving style, which was designed
in the parameters expressed in Section 3.1.

5. RESULTS
The results for the scenarios driving in a straight line
and curve handling are shown in Fig. 6. Fig. 6 (left)

Figure 6. Results. Left: under speed limit. Right: curve handle.
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the sporty driving style. Furthermore, also, we expect
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in the parameters expressed in Section 3.1.

5. RESULTS
The results for the scenarios driving in a straight line
and curve handling are shown in Fig. 6. Fig. 6 (left)

Figure 6. Results. Left: under speed limit. Right: curve handle.

shows the results for the scenario driving in a straight
line, and its related goal staying under the speed limit.
From the difference in emotional values between
the events under speeding and over speeding, it can
be seen that the happiness and fear reduces, while
anger, sadness and surprise increase. Whereas, the
stress value is similar in both cases. The database
of the goals show that the agent related is the
driver, since, the agent is choosing to over‑speed
the anger emotions appear. Also, for this goal the
LoS = LoF in the database then, the emotion of
fear appeared. The results showed the need to have a
dynamic LoF so the fear emotion only appears when
danger is detected, such as a probability of accident
above 0.5.

The goal curve handle is shown in Fig. 6 (right).
The results showed four emotions for the proper
and improper curve handling events. The emotion
of happiness dominates the emotion in proper
curve handling event. However, sadness and surprise
dominate the emotions in the improper curve event.
The stress increases signi�icantly for the improper curve
handling compared to the proper event, which increases

the intensity of negative emotions. Hence, the use of SF
as a danger indicator showed to be valuable, as stated in
the hypothesis in Section 4.2.

Fig. 7 shows the scenarios lane change and car
following tested to compare static LoF anddynamic LoF
(LoF = SF). In both scenarios lane change and car
following the dynamic LoF showed consistently higher
intensity values than the �ixedLoF . Hence, the results are
in line with the hypothesis shown in Section 4.2.

The results to analyze the behavior of the driving
style are shown in Fig. 8. The scenarios chosen for
this test were car follows (left) and overtake (right).
In both �igure shows a clear trend where the stress
decreases while the personality of the car increases
in aggressiveness. Furthermore, the values of the
emotion of happiness increase while the aggressiveness
increases, while the value of the emotions anger,
disgust, fear, sadness and surprise decreases with
the aggressiveness level. Hence, the stress factor
personalized the emotion computation according to the
classi�ication of calm, normal and sporty scenarios, as
explained in Section 4.2.

Figure 7. Results. Left: proper lane change event emotions and stress. Right: car following, improper distance.

Figure 8. Results. Left: car following, improper distance. Right: overtake, no collision detected.
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6. DISCUSSION AND CONCLUSION
This article presented the implementation of a stress
factor as part of the computation of emotions and as a
decision variable. Finally, this article aims to generate
personalizing of the stress factor related to the driving
style of the user.

The results showed a successful behavior of the stress
factor as an indicator between positive and negative
events. Also, from the results, it is noticed that the stress
factor can generate a greater set of values for emotions.
Thus, the stress factor can be used as a decision variable
for safety. Moreover, the stress factor used as the goal’s
LoF showed that the intensity of emotions is greater
according to the probability of an accident. Thus, the SF
can be used as the LoF . Then, we can conclude that this
approach generates a situation awareness of the vehicle
for dangerous situations.

The stress factor personalizing results shows promising
results too. Thepersonalities characteristics depends on
the user of the vehicle. Personalizing the stress from
the driving style showed that a vehicle can experience
signi�icantly different levels of stress depending on the
driving style. Furthermore, the personality also affects
the emotion computation. This can be a step forward
towards personalizing a CarEs.

In future work, strategies to reduce the stress of
the system, CarEs should be explored. The strategies
should aim to reduce the stress, thus reducing the
danger. Hence, the systemwould computemore positive
emotions by making decisions that actually reduces the
danger of the passenger, but that are a function of the
resilience of a driver, in other words the driving style.

Finally, the scope of this article was limited to the
design of the framework and behavioral testing. Then as
future work user testing is consider to understand the
acceptance of drivers, pedestrian or road users.
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