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 1.  INTRODUCTION: THE RISE  
OF ALLOMETRY 

Recently, there has been a flurry of excitement in ecology con-
cerning the resurgence of allometry and its associated scaling laws 
going under the name macroecology [1]. The 20th century works on 
allometry by Huxley [2], Needham [3], Laird [4], and Medawar [5], 
have formed a basis for ontogenic studies of large numbers of fauna, 
which ultimately has informed this recent interest. It is reasonable 
to think that the plethora of current works on experimental physi-
ology using allometry is a continuation of the tradition of searching 
for the “Holy Grail” or Bauplan, the foundation of organic form 
and metabolic function.

Sir Joseph Needham called his discovery of allometry in his exper-
imental studies of growing animal embryos, a “chemical ground 
plan” for development [3]. Also, Sir Julian Huxley, father of the 
Neo-Darwinian paradigm, focused on allometric descriptions of 
morphology in animals, especially invertebrates [2], and Laird [4] 
proved the ubiquity of Gompertz growth curves for organ bio-
masses in large numbers of vertebrate species. She discovered that 
virtually all organ biomasses of a given individual have the same 
Gompertz rate constant. Although these are different for different 
individuals, they are characteristic of specific species. She con-
cluded that the Huxley/Needham straight line allometric law holds 
for many sizes and kinds of vertebrate individuals.

Also in plants allometry is a major topic. Allometry in Plants: The 
Scaling of Form and Process [6], presents an important engineering 

perspective on a “design of plants” based on allometry between 
their multitudes of organs. Such studies can be seen to relate his-
torically to the 19th century work on the morphology of plants by 
von Goethe [7] with his botanist contemporary, de Candolle and 
Agnes’s work in the 1950’s [8]. Application in plants was slow. Yet, 
allometry was used in American forestry as a method for esti-
mating crown-biomass from trunk diameter in stands of trees, by 
the 1940’s [9]. Before that, allometry with respect to scaling and 
as differential growth was discussed in On Growth and Form,  
by Thompson [10].

Although, Harper’s 1967 magnum opus [11], on plant ecology 
brought flora into mathematical and quantitative ecology in a way 
comparable to what had already been achieved for fauna, no special 
role had been singled out for allometric ideas. However, Harper in 
1976 wrote “it appears therefore that the 3/2 thinning law describes 
an upper limiting condition which may not be exceeded by any com-
bination of surviving plant numbers and weights” [12]. In Harper’s 
concept of plants as clonal organisms, the modular unit or phy-
tomer, is a piece of stem, a bud and a subtending leaf and this is 
repeated throughout the development and lifetime of plants. The 
individual phytomers may, in the vegetative phase, consists of veg-
etative leaves, whereas in the generative phase petals and stamen 
can be considered as variations on leaves. This great finding of von 
Goethe has been corroborated by molecular biology.

In the past two decades, allometry has been an active field of 
research in particular because of the West–Brown–Enquist model 
[1,13]. Moreover, datasets have become increasingly large, also in 
plants. In a study on scaling relationships between leaf area and 
leaf shape in 12 species of Rosaceae, more than 3000 leaves were 
sampled, and for each leaf 500 data points were determined [14].
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In recent decades, a resurgence of allometry in ecology and its associated scaling laws has been observed, going under the name 
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metabolism and physiological interactions. The models obtained contrast strongly with Riemannian theory. The geodesic coefficients 
for our example depend only on the x-variables, as in all Riemannian geometries, but, is true in Finsler theory only for Berwald spaces.
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2.  ALLOMETRY AND HILBERT’S  
FOURTH PROBLEM

If we think of allometry as simply a collection of straight lines 
obtained by least squares fitting of pairs of data points on morphol-
ogy, physiology, or ecology for individuals, or populations, with a 
single regression line for each data pair, then allometry becomes 
a sort of species-specific blue-print of internal architecture, or of 
external architecture as observed in plant phyllotaxis [15], the forms 
of flowers or in seashells [16]. The method has been applied for 
decades to non-biological objects. There is for instance, the famous 
“golden ratio” approach to fine art and architecture [17]. There are 
also the lesser known Gutenberg–Richter Law for the frequency 
distribution of earthquakes, the Pareto Law for the distribution of 
incomes among individuals, the so-called Zipf ’s Law for the sizes of 
cities and the Kleiber Law for the basal metabolic rate in individual 
animals, especially humans [18].

The project our group focused on over several decades is the devel-
opment of a corpus of geometric techniques, especially Finsler 
differential geometry, for the study of systems of second order 
ordinary differential equations (SODE’s) called Analytical Modular 
Dynamics (AMD), which seeks to describe interactions between 
cell populations of various organs, each producing hormones, 
x’s, effecting the set of organs in an individual during growth and 
development, and which exhibit the Huxley/Needham allometric 
law between the x’s produced. Thus, the Huxley/Needham Law 
becomes a consequence of metabolism and physiological inter-
actions describing the dynamics of hormone production in the 
different sets of modular units (i.e., cells of organs). We have also 
developed a theory of Brownian motion in Finsler geometry in 
order to model internal noise during development [19].

Readers who are not familiar with Finsler geometry may recall the 
helpful dictum, “Finsler geometry is Riemannian geometry without 
the quadratic restriction”, uttered by the great geometer, Chern, at 
the first AMS conference on Finsler Geometry, in 1995, in Seattle, 
Washington. It refers to the scalar product on tangent spaces of 
Riemannian manifolds being allowed relaxation from this qua-
dratic condition to become a norm on tangent spaces of Finsler 
manifolds.

One important finding in Finsler science is the equivalency to 
Hilbert’s 4th problem, that of classifying the Finsler geometries 
having straight lines as shortest distances between two points, where 
straight lines are allometries holding globally [20–22]. The mathe-
matician, Berwald, founder of Finsler geometry (along with Cartan 
and Finsler), is credited with solving this famous problem in two- 
dimension, with the condition that the geodesic equations be 
quadratic, called nowadays, geodesics of Berwald space [23]. The 
general case remains unsolved to this day.

3. ANALYTIC MODULAR DYNAMICS

One proceeds in AMD by modelling a dictum from 19th cen-
tury Russian botanists studying lichen symbiosis [24]. In the deep 
evolutionary past of lichens, the algal and fungal partners inter-
acted ecologically and gradually that interaction became more 
and more integrated due to genome modifications, thereby 

stabilizing chemical exchanges [24]. Following the early work of 
Volterra, Gause, Witt and Lotka, it is natural to try constant coef-
ficient quadratic equations to model this. But this must be coupled 
with chemical production, so that over time, these coefficients 
become dependent on the products the alga and fungi produce. 
Furthermore, the symbiosis must have energy constraints and so 
SODE candidates must be Euler–Lagrange equations for a cost 
function, F, depending on x, dx, and t.

Furthermore, the cost must be assumed to be first degree positively 
homogeneous in dx (just the norm condition mentioned above) so 
that the total cost over a time interval will be independent of how 
time is measured. Moreover, if one assumes each partner repro-
duces its modular units at nearly the same rate (so each kind of cell 
is never isolated from the other), reparametrization of production 
curves with S, with dS = F (x, dx), eliminates, t. In this way the Euler–
Lagrange equations become geodesics of the Finsler geometry defined 
by F. If the assumption of quadratic F-geodesics (i.e., geodesics of 
Berwald spaces) is adhered to the two-dimensional Finsler geom-
etries possible are essentially of three types and when the geodesic 
coefficients are all constants, are described by the theorem known 
as the Finsler Gate [19–21; Appendix]. Such constant connection 
Berwald spaces have ecological meaning and broad applicability in 
ecology, evolution, physiology and epidemiology [20–23,25].

Among the three Berwald types one has an allometric Bauplan, i.e., 
has geodesics that are straight lines as in Hilbert’s fourth problem 
mentioned above. To briefly describe Berwald’s idea, we write
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If we stipulate that P0 = 4Z(x), P1 = 2, Q0 = 2Z 2(x) and Q1 = 0, 
the F-geodesics conform to the Huxley/Needham allometric law, 
provided x = (x1, x2) are interpreted as log biomasses and Z(x) is 
a smooth solution of Berwald’s equation for projective flatness, 
Z ∂1(Z) = ∂2Z [25]. Here the subscripts indicate partial differentia-
tion by either x1 or x2. Rewriting, we have the Kropina-type Finsler 
metric expression

   
dS
dt

N Z x N
N

=
+( ( ) )1 2 2

2   (3)

There are many Z(x) that provide solutions and have positive 
Berwald-Gauss curvature scalar indicating Jacobi stability of solu-
tion trajectories [26,27]. A simple Riemannian geometric example 
of this type of stability is great circle arcs on a sphere. They oscillate 
back and forth crossing any chosen arc at the poles. Geodesics on 
a trumpet-shaped surface diverge away and so the system, having 
negative curvature is Jacobi unstable. Finally, along any solution 
curve of the Kropina metric the Huxley/Needham law holds true 
provided Berwald’s projective equation holds.
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4. CONCLUSION

We have used the above procedure to obtain interaction schemes 
whose Finslerian cost functionals depend explicitly on the ratios 
N 1/N 2 while maintaining the Huxley/Needham law along solu-
tions. The Euler–Lagrange curves are geodesics of the Kropina 
metric above [27]. The curvature scalar is highly variable. This con-
trasts strongly with Riemannian theory where the projective geom-
etries must have constant curvature. The geodesic coefficients for 
our example depend only on the x-variables. Of course, this holds 
for all Riemannian geometries, but, is true in Finsler theory only 
for Berwald spaces [23].
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