

Journal of Automotive Software Engineering

ISSN (Online): 2589-2258 ISSN (Print): N/A

Journal Home: https://www.athena-publishing.com/journals/jasen

Article Title

Querying Automotive System Models and Safety
Artifacts: Tool Support and Case Study

Authors

Alessio Di Sandro, Sahar Kokaly, Rick Salay, Marsha Chechik

Corresponding Author

Alessio Di Sandro – adisandro@cs.toronto.edu

Cite This Article As

A. Di Sandro, S. Kokaly, R. Salay, M. Chechik. Querying Automotive
System Models and Safety Artifacts: Tool Support and Case
Study. Journal of Automotive Software Engineering, Vol. 1(1), pp.
34–50, 2020.

Link to This Article (DOI)

https://doi.org/10.2991/jase.d.200912.001

Published on Athena Publishing Platform

31 January 2022

https://www.athena-publishing.com/journals/jasen
mailto:adisandro@cs.toronto.edu
https://doi.org/10.2991/jasen.doi.doi.doi

Journal of Automotive Software Engineering
Vol. 1(1), 2020, pp. 34–50

DOI: https://doi.org/10.2991/jase.d.200912.001; ISSN: 2589-2258
https://www.atlantis-press.com/journals/jase/

Querying Automotive System Models and Safety Artifacts:
Tool Support and Case Study

Alessio Di Sandro*, , Sahar Kokaly, Rick Salay, Marsha Chechik

Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4, Canada

ART I C L E I N FO
Article History

Received 02 Jan 2020
Accepted 19 Aug 2020

Keywords

Megamodels
Queries
Safety cases
Automotive

ABSTRACT
The automotive domain has recently increased its reliance on model-based software development. Automotive models are often
heterogeneous, large and interconnected through traceability links. When introducing safety-related artifacts, such as Hazard
Analysis, fault tree analysis (FTA), failure modes and effects analysis (FMEA) and safety cases, querying these collections of
system models and safety artifacts becomes a complex activity. In this paper, we define generic requirements for querying meg-
amodels and demonstrate how to run queries in our Model Management INTeractive (MMINT) framework using the Viatra
query engine. We apply our querying approach to a vehicle’s Lane Management System case study through the process of its
creation and maintenance, perform a comparison with an Object Constraint Language (OCL)-based approach and show how
queries can help achieve compliance with the ISO 26262 standard.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Modeling has become a standard activity in the automotive domain.
Various types of models are used at different stages of the software
development life cycle (requirements, design, testing, etc.), and in
many cases thesemodels are related through traceability links.With
the introduction of regulatory standards, such as ISO 26262 [1],
companies are beginning to focus on producing safety-related arti-
facts which support the argument that the system being developed
is safe through the construction of a safety case. Examples of safety
artifacts are hazard analysis and risk assessment (HARA), fault tree
analysis (FTA), failure modes and effects analysis (FMEA), etc.

Work related to the use ofmodeling for safety assurance in the auto-
motive domain has focused onmodeling safety standards, processes
and specific safety cases. For example, the work in Ref. [2] shows
that the ISO 26262 standard for functional safety of road vehicles
can be represented by a combination of structure, conceptual and
process models while the work in Ref. [3] proposes a conceptual
model of IEC 61508. Also, modeling notations for safety (assur-
ance) cases have been proposed, most notably, the Goal Structured
Notation (GSN) [4]. Other approaches include the Claim, Argu-
ments and Evidence (CAE) [5] approach and OMG’s Structured
Assurance CaseMetamodel (SACM).1 Model-based approaches for
compliance have also been studied. For example, the authors of
Ref. [6] propose model-based assurance for justifying automotive
functional safety. The work in Ref. [7] proposes a model-driven

*Corresponding author. Email: adisandro@cs.toronto.edu
1OMG: http://www.omg.org/spec/SACM/1.1/

safety certification method for process compliance. In Ref. [8], an
artifact-centric compliance approach for ISO 26262 projects using
model-based design is proposed. The approach is intended to
streamline ISO 26262 compliance documentation for software
developed using model to code generation. In Ref. [9], a model-
based specification approach of safety compliance needs for critical
systems is proposed by introducing a holistic generic metamodel.
Themetamodel abstracts concepts and criteria fromdifferent safety
standards, and its application results in models for structuring
and managing compliance information. In Ref. [10], the authors
propose to use conceptual models in the form of metamodels to
support certification data reuse and facilitate safety compliance.
Finally, the work in Ref. [11] offers a modeling approach to sup-
port safety assurance in the automotive domain by proposing a rule-
based approach that enables extracting a conceptual model from
safety standards or project guidelines. While the abovementioned
work recognize the need to use modeling artifacts to track the com-
plexity of safety assurance in the automotive domain, there is a
gap in the availability of modeling techniques and tools capable of
extracting the relevant information at various stages of the automo-
tive safety workflow.

In previouswork,we have focused our research efforts on proposing
model management techniques to tame the complexity caused by
the many interconnected and heterogeneous models used in large-
scale software development (e.g., Ref. [12]). Safety assurance in the
automotive domain is a direct application of heterogeneous model-
ing, and asking questions about the large, interconnected and het-
erogeneous collections of automotive models and safety artifacts
(e.g., by a system or safety engineer) becomes a complex activ-
ity where tool support is needed, both at the stage of constructing

https://doi.org/10.2991/jase.d.200912.001
https://www.atlantis-press.com/journals/jase/
https://orcid.org/0000-0003-2429-4958
https://orcid.org/0000-0002-6301-3517
http://creativecommons.org/licenses/by-nc/4.0/

A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50 35

the different artifacts (e.g., the safety case goal decomposition) and
afterward, in order to facilitate analysis,maintenance and evolution.

To enable querying collections of models and links between them,
researchers have previously considered using query languages (e.g.,
Object Constraint Language [OCL] [13], Viatra [14], EOL [15]);
however, it is often done in an ad hoc manner for a limited set of
applications. We are aiming for a generic way of querying hetero-
geneous collections of models and relationships (megamodels) that
can be easily applied, although not limited, to automotive safety
assurance.

This paper reports on our work on building a query engine for sup-
porting model-driven safety analysis in automotive systems, and
model-drivenmegamodeling in general, and evaluates it on realistic
examples—supporting development scenarios of the LaneManage-
ment System (LMS) and analyses required for compliance with the
ISO 26262 standard. We also introduce requirements for querying
megamodels, evaluate two candidate query languages, Viatra and
OCL, for their suitability for this task and report on implement-
ing such querying in Model Management INTeractive (MMINT)
[16]—our tool for the construction and management of heteroge-
neous megamodels. The goal of the extension is to enable a safety
engineer to easily receive answers to questions about automotive
models and their safety artifacts.

An earlier version of this work has been reported in Ref. [17]. This
paper provides amore thorough description of the work, expanding
the number of considered scenarios (to include construction and
change impact assessment), illustrates them through the process of
deriving a safety case for the LMS, and discusses the use of queries
to achieve compliance with the ISO 26262 standard.

Contributions and organization. In this paper, we make the fol-
lowing contributions:

1. We describe a derivation of an LMS safety case and illustrate
the use of querying during the process, after the process, and
as the system undergoes change;

2. We contribute a set of requirements that a query engine built
on top of megamodels should implement;

3. We describe an approach for queryingmegamodels inMMINT
using the Viatra query engine;

4. We do a comparative evaluation of the approach with respect
to OCL;

5. We evaluate the applicability of the approach on the LMS case
study;

6. We demonstrate the use of queries to achieve the complete
compliance coverage of a fragment of the ISO 26262 standard.

The rest of this paper is structured as follows: Section 2 introduces a
motivating example. Section 3 provides some required background
on modeling, describes the LMS case study, derives a safety case
for it and illustrates the use of querying. Section 4 describes our
approach for megamodel querying and discusses the details of the
Viatra integration in MMINT. Section 5 demonstrates the use of
the approach on the LMS case study and compares the Viatra-based
approach to the OCL-based one. Section 6 demonstrates the use of
querying to achieve compliance with a fragment of the ISO 26262
standard. Section 7 discusses related work and Section 8 concludes
with a summary and discussion about future work.

2. MOTIVATING EXAMPLE

Consider the automotive system in Figure 1. The figure shows a
collection of system models (e.g., UML class diagrams, UML state
machines, Simulink models, etc.), as well as a collection of safety-
related artifacts (e.g., HARA, FTA, FMEA, Safety Case, etc.), and
traceability relationships between them. In practice, such systems
will contain many other system models as well as various other
safety artifacts, and the complexity of these networks of models and
traceability links (which we refer to as megamodels) grows as the
systems become larger and more complicated. Next, we introduce

Figure 1 Motivating example.

36 A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50

six scenarios derived from some realistic activities that safety
engineers may be involved in, within the automotive system in
Figure 1.

S1: Building the safety case. While constructing the safety case,
a safety engineer can benefit from searching elements within the
systemmodels. Assume that she is in the process of decomposing a
safety goal corresponding to an abstract component, e.g., a generic
user alert. She would like to find all concrete implementations of
such component to decompose the generic safety goal into multiple
concrete sub-goals.

S2: Adding traceability links. During and after the construction
of the safety case, it is important for a safety engineer to keep
track of the system design model elements that are relevant to the
safety elements. This is done via traceability links. Such links can
be created via a variety of mechanisms, e.g., by name similarity.
To construct these, the safety engineer may want to find system
elements with names that match one or more keywords from the
safety case.

S3: Safety case change. After the safety case and traceability links
are created, assume that a safety engineer is planning to change a
specific element of the safety case. She would like to evaluate the
potential impact of such a change and find out which system ele-
ments from the various system models are directly related to the
changed safety element.

S4: System model change. Changes can originate from the sys-
tem engineers as well. Assume that a system engineer is plan-
ning a change to a specific element in the class diagram. Similarly
to the previous scenario, she would like to evaluate the potential
effects of such a change on the safety case elements, or on other
system elements that are directly related to the changed system
element.

S5: Identifying medium risk elements. In ISO 26262 hazards,
and therefore the associated safety goals, are assigned Automotive
Safety Integrity Levels (ASILs), which are a type of risk classifica-
tion scheme. The ASIL is established by performing risk analysis of
a potential hazard by looking at the Severity, Exposure and Con-
trollability of the vehicle operating scenario. Assume that a safety
engineer is interested in identifying all ”medium risk” model ele-
ments, where ”medium risk” means being connected with safety
goals with, e.g., an ASIL B.

S6: Identifying highly interconnected elements. In this scenario,
a system design engineer is interested in identifying all model ele-
ments that are highly interconnectedwithin the systemmegamodel,
where an element is considered to be ”highly interconnected” if it
hasmore than a certain number of connections to other elements in
the system. This can help in understanding which elements could
have more severe impact if they were to be changed.

In this paper, we show how to use querying to support such safety
scenarios.

3. BACKGROUND

In this section, we present some required background on meg-
amodels,MMINT, safety cases and ASILs.

3.1. Megamodels

A megamodel [18,19] is a special type of model that represents a
set of models connected by relationships. Figure 2(a) shows the
metamodel of a megamodel.

In the example megamodel in Figure 2(b), the relationship r con-
nects the class diagram model x and the safety case model y. This
figure also introduces our notation: models are yellow boxes and
relationships are blue/gray rounded boxes with blue arrows con-
necting themodel endpoints. Both kinds of boxes contain the name
of the artifact (e.g., r, x, y) and its type (e.g., ModelRel, ClassDia-
gram, SafetyCase).

3.2. MMINT

MMINT [16] is an interactive framework for model management.2
Implemented in Java, it extends the MMTF model management
framework [20]. MMINT uses the Eclipse Modeling Framework
(EMF) [21] as modeling technology and the Eclipse Graphical
Modeling Framework (GMF) to create custom editors for editing
models and relationships. The overall architecture of MMINT is
illustrated in Figure 3.

In MMINT, a megamodel is referred to as a Model Interconnec-
tion Diagram (MID) and is managed through the MID editor.
Engineers can use the MID editor to interactively create models
and relationships, invoke transformations on them and inspect the
results in a graphical way. Customizations and supporting tools
such as type-specific editors, validation checkers, solvers and trans-
formations, can be plugged in and are managed by the type support
run-time layer. In addition,MMINT provides a generic relationship
editorwhich allows creating and editing sets of links betweenmodel
elements.

3.3. Safety Cases and ASILs

Safety cases are structured arguments intended to assure that sys-
tems adequately mitigate identified hazards. Safety cases are fre-
quently represented in the GSN [22] modeling language. GSN is
comprised of six core elements—see Figure 4. Safety arguments in
GSN are typically organized into a tree of these core element types:

Figure 2 (a) Metamodel of megamodels. (b) Example
megamodel.

2 Available at http://github.com/adisandro/MMINT.

A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50 37

Figure 3 Architecture of Model Management INTeractive
(MMINT).

Figure 4 Core Goal Structured Notation (GSN)
elements from Ref. [22].

goal (box), strategy (parallelogram) and solution (circle). The over-
all goal to be satisfied by the system is the root element being gradu-
ally decomposed (possibly via strategies) into sub-goals and, finally,
into solutions, which are the leaves of the safety case representing
the types of evidence obtained from analyzing the system.

Connections between goals, strategies and solutions are represented
by solved-by relations which indicate inferential or evidential rela-
tionships between elements. Goals and strategies may be optionally
associated with some contexts, assumptions and/or justifications by
means of in-context-of relations. These declare a contextual rela-
tionship between the connected elements. We extend GSN with an
additional notation (small square boxes on the bottom right of the
goals) used to reflect theASIL of the goal. The ASIL is a risk classifi-
cation scheme defined in the ISO 26262 standard. Associated with
a goal, ASIL values can be QM, A, B, C or D, ordered from the low-
est to the highest risk.

For example, consider the safety case in Figure 5. The top level goal
is “G0: The LMS system safety goals are satisfied.” This is decom-
posed into sub-goals G1 - G3 via a strategy “S0: Coverage over all
safety goals” which means that all sub-goals need to hold in order
for the parent goal to hold. Safety goalsG2 andG3 are derived from
hazards identified by a hazard analysis step, and are assigned ASIL

levels A and B, respectively. They are each linked to a contextual
element, C0 and C1, respectively, which refer to the hazard that
each safety goal is derived from. GoalG1 is linked via a strategy S20
to a supporting solution “Sn0: HAZOP reviewed by expert” which
points to the HAZOP documentation, which has been reviewed by
an expert, as supporting evidence. The two other safety goals are
decomposed further all the way down to leaf level goals that are
eventually supported by evidence through solution nodes in the
safety case. The decomposition takes into account ASIL propaga-
tion and decomposition rules as stated in the ISO 26262 standard.
LMS describes a LMS from the automotive domain. It is considered
to be anAdvancedDriver Assistance System (ADAS) system, which
is safety critical and subject to the ISO 26262 standard.

The Software Requirements Specification (SRS) document for LMS
from Ref. [24] describes LMS as consisting of several subcom-
ponents. These subcomponents include a Lane Centering System
(LCS), a Lane Departure Warning System (LDWS) and a Lane
Keeping System (LKS). LMS is designed to be placed in automobiles
as a safety feature with the goal of keeping the driver’s vehicle in or
near the center of their lane to avoid crashes caused by drivers who
become distracted and therefore inattentive to what lane they are in.
The LDWSwill issue warnings to the driver when the system deter-
mines that a lane change was unintentional. The LCS and LKS will
work together to take control of the vehicle and adjust to a driver-
defined center of the lane. The overall system will make use of
output data from several already-developed subsystems including
Camera Sensing Subsystem, Image Processing Subsystem, Vehicle
State Estimation System, Path Prediction Subsystem, Driver Inter-
face Subsystem and a Supervisory Control System. LMSwill be able
to take control of the vehicle’s braking and steering systems; how-
ever, the system will not be able to accelerate. Finally, the LMS will
work at speeds above five miles per hour only.

LMS is comprised of one class diagram, four sequence diagrams
and four state machines (i.e., a total of nine system design models),
which are described in Ref. [24]. The corresponding megamodel of
LMS inMMINT is shown in Figure 6. For example, Figure 7 shows
the class diagram for LMS. This class diagram depicts the various
subcomponents of LMS, in terms of classes with their attributes and
operations, and associations between them.

The complete set of system models that are part of LMS, together
with the list of traceability links between models, can be found in
Ref. [23].

3.4. Building the LMS Safety Case

We now derive a safety case for LMS. We describe the process,
instantiate it for LMS, and identify cases where querying can aid
this construction.

Hazard analysis and ASIL derivation. The first step in creating a
safety case is identifying the system hazards by means of a hazard
analysis activity. A hazard, as defined in ISO 26262, is a potential
source of harm (physical injury or damage to the health of persons)
caused bymalfunctioning behavior (failure or unintended behavior
of an item with respect to its design intent) of the item (in this case,
the LMS system under consideration).

As described in ISO 26262, a HARA method is used to identify
and categorize hazardous events of items, and to specify safety goals

38 A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50

Fi
gu

re
5

La
ne

M
an
ag
em

en
tS
ys
te
m
 (L

M
S)

Sa
fe
ty
Ca

se
in

M
od

el
M
an
ag
em

en
tI
N
Te
ra
ct
iv
e(
M
M
IN

T)
.

A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50 39

Figure 6 System megamodel for the Lane Management System case study [23].

and ASILs related to the prevention or mitigation of the associated
hazards in order to avoid unreasonable risk. For this, the item
is evaluated w.r.t. its functional behavior; therefore, the detailed
design of the item does not necessarily need to be known. Safety
goals and their assigned ASILs are determined by a systematic eval-
uation of hazardous events. The ASIL is determined by considering
the estimate of the impact factors, i.e., severity, probability of expo-
sure and controllability. The severity represents an estimate of the
potential harm in a particular driving situation, while the probabil-
ity of exposure is determined by the corresponding situation. The
controllability rates how easy it is for the driver or other road traffic
participant to avoid the considered accident type in the considered
operational situation.

Conducting a high-level hazard analysis for LMS yields the follow-
ing two hazards:

• System Hazard 1 (H1): Failing to notify driver when LMS fails
(Vehicle Hazard: unintended operation of vehicle feature).

• SystemHazard 2 (H2): LMS prevents driver overriding control
of steering (Vehicle Hazard: vehicle feature prevents driver
from controlling the vehicle).

In order to determine the appropriate ASIL level assigned to each of
the hazards, we assign levels for each of their severity, probability of
exposure and controllability. Based on the guidance in the standard
and expert opinion from our industrial partner, we have assigned
the two hazards the levels shown in Table 1. We then used the ASIL
determination given by the standard and shown in Table 2, to com-
pute the associated ASILs; ASIL A forH1 and ASIL B forH2.

Extracting information from ISO 26262 could be done via query-
ing, e.g., finding the correct ASILs from the ASIL determination
Table 2. It requires encoding parts of the standard as models
[2,3,25].

Representing a safety case. Next, we constructed a GSN represen-
tation of a safety case for LMS, which is shown in Figure 5. We

started by defining a top level goal “G0: The LMS System Safety
Goals are satisfied”. G0 is decomposed into

• “G1: The set of safety goals is complete,” which is a claim about
the completeness of the system safety goals,

• “G2: The LMS system notifies driver if it fails,” which is a safety
goal associated with hazardH1 (see the context node C0), and
assigned an ASIL A,and

• “G3: LMS always allows user to override and take control,”
which is a safety goal associated with hazardH2 (see the
context node C1), and assigned an ASIL B.

ASIL decomposition rules from ISO 26262 are listed in Table 3.
Similarly to the initial ASIL determination from the previous stage,
queries can help select the appropriate decomposition rules from
the standard. G2 is then decomposed into

• “G4: LMS can detect failure in any of its subsystems” and

• “G5: If the LMS fails, prior to shutting off it will alert the driver.”

Note that while G5 inherits the ASIL of its parent’s goal (A), G4 is
assigned a higher ASIL (B) as it also supports goal G28 which has
ASIL B.

The safety case construction involves the decomposition of high-
level claims into subclaims. Queries can be used to aid in this pro-
cess by finding the potential subjects for subclaims. The use of a
query helps ensure that the set of subclaims is complete—an impor-
tant property of a sound decomposition. For example, the decom-
position of G5 is particularly interesting, using the strategy “S8:
Decompose over user alerts.” In this case, the safety engineer can
benefit from querying the system design models to identify the dif-
ferent user alerts that exist in the system, and ensure that the goal
G5 is completely decomposed over them. This corresponds to Sce-
nario 1 of Section 2 and is implemented in Section 5.1.

40 A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50

Figure 7 Lane Management System (LMS) class diagram in Model Management INTeractive (MMINT).

Table 1 LMS hazard analysis.

ID Severity Exposure Controll. ASIL

H1 S1 E4 C2 A
H2 S3 E2 C3 B

LMS, Lane Management System; ASIL, Automotive Safety Integrity Level.

We continued the goal decomposition until we reached a set of leaf
goals that can no longer be decomposed, but can be directly linked
to supporting evidence via solution nodes. More details about this
process can be found in Ref. [23].

Adding traceability links. In this final step, we created links con-
necting the LMS system design models to the safety case. We can
leverage queries at this step as well, and a simple strategy is to select
one or more keywords from each goal to find system elements by
name. For example, let us consider the goals G11, G12 and G13,
which refer to the three subcomponents of LMS and share a similar
text “LKS/LDWS/LCS TurnOff() function works correctly.” A query
can be used to find the appropriate TurnOff() function within a

Table 2 Automotive Safety Integrity Level (ASIL) determination table
from Ref. [1].

Severity Exposure Controllability
C1 C2 C3

S1 E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2 E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3 E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

specific subcomponent in order to create the three traceability links.
This is Scenario 2 of Section 2, implemented in Section 5.2.

A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50 41

Table 4 lists the traceability links from the LMS safety case elements
in Figure 5 to the LMS class diagram elements in Figure 7. We
are aware that this table is not complete, i.e., there could be other
links from the safety case to the system models; our goal here is
just to demonstrate the approach. More complicated strategies and
queries, such as the ones described inRefs. [26–29], can also be used
to create traceability links.

3.5. LMS Evolution

After being created, the LMS megamodel is used and modified by
system and safety engineers. In this ”Evolution” phase, queries are
essential since they can be used to understand the potential effects
of proposed changes. For example, the engineers may consider a
change to the ASIL of goalG5 in the safety case. They can ask which
other system elements are connected through traceability links to
determine the impact of this change on the rest of the system and
identify which other stakeholders need to be involved in the deci-
sion making. The opposite direction can also be explored, targeting
a change to one of the system models, e.g., the class LMSSystem,
and asking which safety case elements are potentially impacted and
which can be reused [30].

The use of traceability links at this stage is fundamental, as they
enable queries that span the entiremegamodel. The relevant queries
for these tasks represent Scenarios 3 and 4 in Section 2 and are dis-
cussed in Sections 5.3 and 5.4, respectively.

4. QUERYING MEGAMODELS

In this section, we define a set of requirements that a query engine
built on top of megamodels should implement, split into generic
and implementation-specific. We then discuss and compare two

Table 3 Automotive Safety Integrity Level (ASIL) decomposition
strategies from Ref. [1].

Original ASIL Decomposed ASILs

D C + A B + B D + QM
C B + A – C + QM
B A + A – B + QM
A – – A + QM

Table 4 LMS safety case to LMS class diagram traceability.

Safety Case Class Diagram

Goals G0, G2, G3, G4, G5, G6, G22,
G28, G31

Class LMSSystem

Goals G18, G20 Solutions Sn3, Sn12 Class AudibleAlarm
Goals G19, G20 Solutions Sn3, Sn11 Class VisualAlarm
Goal G8 Solution Sn7 Operations LKS.CheckStatus,

LKS.CheckConditions
Goal G9 Solution Sn8 Operations LDWS.CheckStatus,

LDWS.CheckConditions
Goal G10 Solution Sn9 Operations LCS.CheckStatus,

LCS.CheckConditions
Goal G11 Solution Sn5 Operation LKS.TurnOff
Goal G12 Solution Sn6 Operation LDWS.TurnOff
Goal G13 Solution Sn10 Operation LCS.TurnOff
LMS, Lane Management System; LCS, Lane Centering System; LDWS, Lane Departure
Warning System; LKS, Lane Keeping System.

query language candidates, the OCL and the Viatra Query Lan-
guage (VQL).We concludewith description of our implementation.

4.1. Query Engine Requirements

A megamodel grows in size more than linearly in the number of
models it contains, due to the number of relationships that can be
created. Each relationship in turn stores links between individual
model elements. The upper bound is to have a complete graph,
with each model connected to every other model. The automotive
domain tends to be densely interconnected, with the safety artifacts
connected to most domain models. For example, in Figure 6, both
the class diagram model and the safety case model have relation-
ships with every other domain model. Visually browsing a meg-
amodel to find the required information becomes impractical after
the megamodel reaches a certain size.We can draw an analogy with
databases, as they both contain heavily structured data which is
directly addressable for more effective processing and analysis. A
query language on top of the megamodel data becomes necessary
to address the complexity of gathering information.

A query engine for megamodels has to navigate instances of the
metamodel in Figure 2. This means being able to follow relation-
ships from a model to a model, as well as accessing heterogeneous
models (i.e., of different types) and navigating their internal struc-
ture. Thus, in Table 5 we define a set of requirements for the query
engine, split into generic requirements that apply to any engine,
and implementation-specific requirements that are tied to the Eclipse
platform on whichMMINT is based.

4.2. Object Constraint Language

OCL is anObjectManagement Group standard for describing rules
and expressions on UML models.3 The Eclipse project provides an
implementation of the OCL standard for EMF models [31], and
uses it as the default language for constraints and queries. In the rest
of the paper, we use the term “OCL” to refer to the Eclipse imple-
mentation of OCL.

Figure 8 shows an example of the OCL syntax. An OCL file has
the .ocl extension and declares a set of contexts where statements

Table 5 Query engine requirements.

ID Requirements

Generic
1 Support a two-tiered navigation: inter-model and intra-model.
2 Handle heterogeneous models in the same query.
3 Allow obtaining a particular result from a query, or the set of all results

from a query; e.g., given a query q with a set of results R = {e1, .., en},
ask whether a particular element ex ∈ R, or ask for the entire result
set R.

4 Provide mechanisms to select query inputs and display results in a
megamodel.

5 Scale to handle big models.
Implementation-specific

6 Integration with eclipse modeling framework (EMF).
7 Availability of APIs to programmatically load and invoke queries.

3Available at www.omg.org/spec/OCL.

42 A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50

Figure 8 An Object Constraint Language (OCL) query file.

are valid, i.e., which model elements the keyword self-corresponds
to. Operations are defined with the def keyword, a name, a list of
parameter variables, and the type of output, similar to a program-
ming language. The implementation is a single statement that fol-
lows the = character, using a functional programming paradigm.
The OCL standard library provides a long list of operations that
can be used to implement queries, including existential and uni-
versal quantification (exists, forAll), filter (select, reject), map (col-
lect), reduce (iterate), aggregators (count, sum, min, max) and the
transitive closure operator (closure). Variables can be compared for
equality (=) and inequality (<>), and new variables can be intro-
duced with the let keyword.

To execute a query, the OCL engine is initialized with a model con-
text. Then, it runs the operation with the passed parameters and
returns the results.

4.3. Viatra Query Language

Viatra is an Eclipse-based framework for the development of
event-driven, reactive model transformations [14]. It includes an
incremental query engine and a graph pattern-based language to
specify and execute model queries efficiently, based on the Rete
algorithm [32].

Figure 9 shows an example of the VQL syntax. A VQL file has
the .vql extension and defines a namespace with the package key-
word. Model patterns are defined with the pattern keyword, a pat-
tern name and a list of parameter variables. Then, enclosed in curly
braces, a list of constraints defines the conditions for the pattern to
match. The available constraints include equality (==) and inequal-
ity of variables (!=), type declarations and model traversal (high-
lighted in blue in Figure 9), pattern composition (find), aggregators
(count, sum, min, max), transitive closure of a binary pattern (+).
Constraints can introduce additional variables for intermediate use,
or have single-use anonymous variables (_).

When a query pattern is being matched, the Viatra query engine
findsmodel objects that satisfy the list of constraints and binds them
to the pattern variables: given a model or a set of models as inputs,
the query engine returns a set of all the available matches. Any of
the pattern arguments can be manually bound to restrict the set of
matches. An unbound argument is automatically searched by the
Viatra query engine from the set of available model elements.

4.4. Comparison of OCL and VQL

We compared OCL and VQL against the query engine require-
ments, showing the outcome in Table 6. Both engines satisfy
Requirements 1, 2, 4—they can navigate arbitrarymodel structures,

A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50 43

Figure 9 A VQL query file (part of the MID.vql library).

Table 6 Comparison of query engine requirements for OCL and VQL.

Req. ID OCL VQL
Generic

1 ✓ ✓
2 ✓ ✓
3 ✓ (Separate queries) ✓
4 ✓ ✓
5 ✗ ✓

Implementation-specific
6 ✓ ✓
7 ✓ ✓

OCL, Object Constraint Language; VQL, Viatra Query Language.

mix multiple models in the same query and allow easy selection of
inputs and display of outputs.

OCL partially satisfies Requirement 3, while VQL fully satisfies
it. VQL has a higher evel syntax than OCL—model traversal is
simpler, and queries can be more concise due to the support for
bound and unbound arguments within one query, so that a single
VQL query can be used both to get a particular result, and for all
results. OCL does not support unbound arguments, requiring mul-
tiple separate queries to achieve the same flexibility. For example,
Figures 8 and 9 show the same queries implemented using OCL
and VQL. The OCL implementation spans 45 lines of code, while
the VQL implementation is only 23. Each of the two VQL queries
requires three separate OCL queries to achieve equivalent results,
impacting the size and readability of the OCL code, e.g., the query
connectedModelElems in Figure 9 is implemented with queries
connectedModelElems1, connectedModelElems2 and connected-
ModelElems3 in Figure 8.

For Requirement 5, VQL scales an order of magnitude better than
OCL, based on the evaluation reported in Refs. [33–35]. Query exe-
cution time in VQL is constant with respect to themodel size, while
it is polynomial in OCL. VQL is optimized for large models, using
the Rete algorithm to populate an in-memory index of model ele-
ments, which is then kept up-to-date on subsequentmodel changes.
VQL queries the in-memory index in constant time, while OCL

traverses themodels for each query.We thus deem this requirement
unsatisfied for OCL.

Finally, both engines satisfy Requirements 6, 7. They are inte-
grated with Eclipse EMF and provide APIs for loading and invoking
queries.

Based on this comparison, we believe that VQL is a superior choice
in terms of performance, flexibility for writing queries, readability
andmaintainability of query code in the long term, and thus choose
to implement megamodel queries inMMINT using Viatra.

4.5. Viatra Integration in MMINT

The main goal of our Viatra integration inMMINT is to be able to
run queries directly from the MID editor in a graphical way. Viatra
has its own separate graphical interface to run queries, but provides
a set of APIs to plug the query engine into other projects. In this
section, we discuss the details of the integration work.

4.5.1. Query abstraction layer

In order to accept query inputs and present outputs graphically, we
add aQuery Abstraction Layer (QAL) inMMINT. The QAL defines
a programming interface to plug in query engines and integrates
them with the MID editor. Query inputs are selected graphically by
clicking on megamodel elements. They are bundled with the spec-
ified query and dispatched to the query engine. The query results
are returned as EMF objects, allowing us to find and highlight the
corresponding megamodel elements—we are currently working on
implementing this functionality and evaluating a number ofUI pro-
totypes. Finally, we create a Viatra connector that implements the
QAL interface.

The QAL interface allows plugging in arbitrary query languages, as
long as an appropriate connector that implements it is created. For
example, Figure 10 shows the QAL interfacemethod to run a query,
written in Java. It requires (a) the path to the query file, (b) the query
name, (c) the context of execution and (d) the query arguments, and
returns a list of objects that match the query. The Viatra connector

44 A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50

Figure 10 The Query Abstraction Layer (QAL) Java interface to
run a query.

implements this interface by invoking specific Viatra APIs to (a)
load a VQL file, (b) find a VQL pattern with the specified name, (c)
initialize the execution context and (d) bind the pattern arguments,
and it returns the objects matching the pattern.

4.5.2. MID VQL library

Afterwriting a fewqueries, we noted that navigating amegamodel is
repetitive, since there are frequently used patterns that lead to code
duplication.We have thus started the process of building a library of
queries, extracting these patterns for reuse into a separate MID.vql
library, a portion of which is depicted in Figure 9. A megamodel
query library is particularly useful because it lets users focus on
queries that are within their domain expertise, e.g., the automotive
domain, since they don’t need to know the details of megamodel
navigation.

For example, queries connectedModelElems and allConnected-
ModelElems are part of the library—the former finds model ele-
ments that are directly connected through model relationships,
while the latter findsmodel elements that are directly and indirectly
connected via multiple hops. Both queries are defined in the library
namespace and contain only code that refers to megamodel naviga-
tion, i.e., accessing elements from the MIDmetamodel inMMINT.
Users can directly use queries in the library, or build upon it to cre-
ate more complex queries. Figure 11 shows examples of invoking a
library query on lines 22 and 28: the connectedModelElems query
is prefixed with the library namespace, and invoked with the find
keyword. Note that the remaining query code focuses exclusively on
model-specific content and does not contain any other megamodel
navigation procedure. The advantages of using the MID.vql library
are clear—we take care of providing and maintaining primitives
to navigate megamodels which can be used for creating domain-
specific queries. The resulting queries are smaller, easier to main-
tain and megamodel independent.

We aim to expand this library as we find more common meg-
amodel queries in the future and demonstrate one such addition in
Section 6. We are including the library into our MMINT installa-
tion package.

Figure 11 The Viatra Query Language (VQL) queries used in
the example scenarios.

5. QUERYING THE LMS SYSTEM

In this section, we illustrate querying in MMINT using the LMS
case study (see Figure 6) and the six scenarios described in
Section 2. Scenarios 1 and 2 are simple model queries that do not
require any megamodel navigation. Scenarios 3 and 4 directly use
queries from the MID.vql library, while Scenarios 5 and 6 require
more complex queries that in turn invoke the library queries. For all
scenarios, the instructions to run queries in the tool are as follows:

1. Open the LMS megamodel.

2. (optional)Open one of the LMSmodels and select one or more
model elements if we are binding query arguments.

3. Use theMMINT context menu to invoke a query, selecting the
query file and the query name.

4. View the query results.

5.1. Scenario 1: Building the Safety Case

This scenario takes place during the construction of the safety case,
before it is finalized. The safety engineers of the automotive com-
pany can query the system design models early on to help with
the decomposition of safety goals. For example, assume that they
are in the process of decomposing goal “G5: If the LMS fails, prior
to shutting off, it will alert the driver” in the LMS safety case from
Figure 5. They would like to identify the different user alarms that
exist in the system in order to decompose the goal completely over
them. They can use the query alarmClasses shown in Figure 11,
getting as results the abstract class Alarm, concrete classes Audi-
bleAlarm,VisualAlarm from the class diagram in Figure 7. The goal
G5 can then be decomposed accordingly, into “G18: Audible alerts
available to driver,” “G19: Visual alerts available to driver” and “G20:
Audible and visual alerts are independent.”

A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50 45

5.2. Scenario 2: Adding Traceability Links

This scenario can take place during or immediately after construc-
tion of the safety case, with the safety and system engineers working
together to keep track of the system design model elements that are
relevant to the safety elements, through the use of traceability links.
For example, suppose they are reviewing the goals G11, G12 and
G13 which share a similar goal “LKS/LDWS/LCS TurnOff() func-
tion works correctly” and refer to the three subcomponents LKS,
LDWS and LCS. They can use the query turnOffFunctions shown in
Figure 11 and get the three classes LaneKeepingSystem, LaneDepar-
tureWarningSystem, LaneCenteringSystem as results from the class
diagram in Figure 7 and their respective TurnOff() functions. This
process ends with the creation of three traceability links connecting
goalG11with operation LKS.TurnOff(),G12with LDWS.TurnOff()
and G13 with LCS.TurnOff().

5.3. Scenario 3: Safety Case Change

In this scenario, the safety engineers of the automotive company
are now reviewing the ASIL of goal G5. To evaluate the effects of
an ASIL change, they would like to know which model elements
from the various systemmodels are directly connected to the safety
goal. From the MID.vql library in Figure 9, the query connected-
ModelElems is used for this scenario. We select the goal G5 before
invoking the query, in order to bind it to the first query argument
modelElemSrc, as shown in Figure 12. We get a single query result,
the class LMSSystem from the class diagram in Figure 6.

The variant query named allConnectedModelElems can alterna-
tively be used for this scenario, to find all model elements that are
directly and indirectly connected to goal G5 through any num-
ber of hops (through the LMS class diagram in this example). This
query uses the transitive closure feature of Viatra, yielding the class
LMSSystem from the class diagram and four other model elements
from the state machine system models.

Figure 12 The Model Management INTeractive (MMINT)
menu to evaluate a query from a bound argument.

5.4. Scenario 4: System Model Change

In this scenario, the system engineers of the automotive company
are modifying the system models and looking for the potential
impact to the safety model. This is in contrast with Scenario 3,
where the safety engineers were modifying the safety model and
looking at the impact to the system models instead. Specifically,
the system engineers are targeting a change to the class LMSSystem
in the LMS class diagram from Figure 7. We can reuse the query
connectedModelElems from the previous scenario, since it works
in the opposite direction as well, this time binding the first argu-
mentmodelElemSrc of the query to the class LMSSystem. The query
results are the goalsG0, G2, G3, G4, G5, G6, G22, G28, G31 from the
safety case in Figure 5 (consistently with the traceability Table 4),
and four other model elements from the state machine system
models.

5.5. Scenario 5: Identifying Medium Risk
Elements

The objective of this scenario is to identify all model elements
connected to any safety goal with an ASIL B. This scenario is a
concrete example of the dual inter-model and intra-model naviga-
tion requirement 1 introduced in Section 4.1, and is implemented
with the query asilBConnectedModelElems in Figure 11. Firstly, the
query finds safety goals with the ASIL B feature within the safety
case model. Secondly, we switch to the megamodel level to fol-
low relationships involving those goals. We find connected model
elements in other models by invoking the connectedModelElems
library query used for the previous scenarios. This query runs with
all arguments unbound on the main LMS megamodel, finding all
the results, i.e., a list of fifteen pairs of goals from the safety case and
classes from the class diagram as results, corresponding to the sub-
set of Table 4 with ASIL B. In alternative, it can run on the safety
case model after selecting a single goal, which is bound to the first
argument goal. For example, running it on goal G5 would yield an
empty result, because it has ASIL A. This scenario highlights how
the same query can be used to get all results, or a particular result.

5.6. Scenario 6: Identifying Highly
Interconnected Elements

The goal of this scenario is to find all model elements that are
highly interconnected within the LMS megamodel. As an exam-
ple, the automotive engineers may consider an element to be
highly interconnected when it has more than five connections
to other elements in the system. In Figure 11, we use the query
highlyConnectedModelElems for this scenario. The query uses
the count aggregator when invoking the connectedModelElems
library query, to count the number of elements returned. We do
not care about which specific elements are connected, and thus we
use an anonymous variable in the invocation. The query then pro-
ceeds to check that number to be greater than five. Running the
query inMMINT yields the two classes LMSSystem and LaneKeep-
ingSystem from the class diagram, with respectively thirteen and six
connections.

46 A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50

5.7. Comparing OCL and VQL Scenario
Queries

In Section 4.4, we compared OCL and VQL against our query
requirements and selected VQL. We now aim to compare the two
languages on the specific example queries developed for the above
scenarios. We have created an additional OCL connector imple-
menting the QAL interface described in Section 4.5.1, and used it
to implement the example scenarios in OCL. We then analyzed the
syntax of the queries and measured their execution times. For sim-
plicity, we show the OCL implementation of the queries for Scenar-
ios 3 and 4 only in Figure 8.

Query size and complexity. From a qualitative perspective, queries
in OCL are longer and more complex to write than VQL, because
of the lower level model traversal. The reason can be found in
the query arguments: VQL allows both unbound and bound argu-
ments in one query definition, while OCL only supports bound
arguments, as discussed in Section 4.4 for generic requirement 3.
In OCL, the user must explicitly implement the equivalent of the
VQL unbound search, which can be hard to optimize and leads to
an increase in query complexity. Figures 8 and 9 show the same
queries, with OCL requiring three queries to implement each VQL
query.

Running times. Table 7 shows the running times of VQL and OCL
queries for each scenario. VQL times are roughly constant and
under 1 second, while OCL times grow with the increasing com-
plexity of the examples, which matches the observations from Refs.
[33–35] (see Section 4.4, discussion on generic requirement 5).
While the unbound search in Viatra is very efficient and is indexed
by the engine, our functionally equivalent OCL implementation is
slow.

Summary. The experience of running our query engine for the
LMS example confirms the conclusion from Section 4.4—VQL is
a higher level language that is easier to use and has a faster query
execution engine. A threat to validity in this analysis is our limited
expertise with writing both VQL and OCL queries and the fact that
we only applied them to specific scenarios.

6. USING QUERIES FOR ISO 26262
COMPLIANCE

In this section, we aim to validate the applicability of our approach
by using queries to achieve a complete coverage of a fragment of the
ISO 26262 standard.We choose the process detailed in Part 3 “Con-
cept phase,” Clause 7 “HARA,” which is further divided into five

Table 7 Comparison of query execution times for each example scenario.

Scenario VQL Time (s) OCL Time (s)

1 0.635 0.326
2 0.569 0.310
3 0.686 0.411
4 0.761 0.436
5 0.830 2.220
6 0.599 32.996

OCL, Object Constraint Language; VQL, Viatra Query Language.

main steps. The final step §7.4.5, titled “Verification,” has the goal
of verifying the correctness and completeness of the HARA from
the preceding four steps. This verification step consists of a single
sub-clause §7.4.5.1, quoted in the left-hand side of Figure 13.

6.1. Relevant Metamodels

In order to create meaningful queries to cover this fragment of the
standard, we must first identify the relevant metamodels and the
relationships between them, shown in Figure 14. Dashed areas rep-
resent separate metamodels, boxes are elements of such metamod-
els, and lines show metamodel relationships with their cardinality.
When instantiated, e.g., one Item in a SysMLmodel is connected to
one or more Operational Situations in a HARAmodel. We omit the
full structure of the metamodels for simplicity.

An automotive Item has a set of Operational Situations in which it
is expected to function in a safemanner. The same Item, if malfunc-
tioning, can cause Hazards. Hazardous Events are relevant com-
binations of Operational Situations and Hazards. Each Hazardous
Event is assigned a severity, probability of exposure, controllabil-
ity, and an ASIL that is calculated based on them (see Section 3.4
for a detailed explanation). A Safety Goal is determined for each
Hazardous Event, with a corresponding ASIL. Multiple Hazardous
Events can be covered by the same Safety Goal, which is assigned
the highest of their ASILs.

6.2. Compliance Queries in Natural
Language

The next step is to create natural language queries that aim to find
sets of models which are not in compliance with the standard. We
use our knowledge of the ISO 26262 standard, the metamodels,
their structure and their relationships to interpret the text of the
sub-clause §7.4.5.1 in the left-hand side of Figure 13. The result-
ing natural language queries are shown on the right-hand side of
Figure 13 and achieve full coverage of the sub-clause §7.4.5.1.

For example, consider the text of the standard for Requirement
b). In terms of the life cycle of the models, an automotive Item is
first created and associated with Operational Situations where it is
expected to function safely. In a subsequent phase, a hazard analysis
is conducted, which identifies a set of Hazards, Hazardous Events
and Operational Situations for potential malfunctions. A mistake
can be made during the hazard analysis by creating an Hazardous
Event for an Operational Situation where the Item is not originally
supposed to operate properly (e.g., a normal vehicle is not expected
to travel cross-country at a high speed). This problem can be found
by the corresponding natural language Query b).

6.3. Compliance Queries in VQL

We now proceed to implement the natural language queries using
VQL and show the outcome in Figure 15. We only include the
rules for ASIL D in Query c) for the sake of brevity. For exam-
ple, Query b) is implemented by taking a Hazardous Event, nav-
igating to Operational Situations both through its direct link and
through the indirect link crossing Hazard and Item, and checking
that the Operational Situations are not the same.While creating the

A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50 47

Figure 13 The complete sub-clause §7.4.5.1, quoted from the ISO 26262 standard (left), and the corresponding natural language queries
(right).

Figure 14 The relevant metamodels for the sub-clause §7.4.5.1
of the ISO 26262 standard in Figure 13.

VQL implementation, we identified a common megamodel opera-
tion connectedEMFObjects which we packaged into a correspond-
ingMID.vql library query—see Figure 16. This library query is used
when crossing each metamodel boundary and is equivalent to the
connectedModelElems query used for Scenarios 3 and 4, except that
it gives access to the raw Eclipse EMF model objects.

Verification is an important activity in the ISO 26262 standard, it
must be carried out according to specific procedures contained in
the standard itself, andmust produce review reports. In this section
we demonstrated an approach to derive compliance queries from
the standard for the purpose of verification, first created using nat-
ural language and then implemented in VQL. The execution of the
queries we defined allow the verification process to be completely
automated.We believe that queries can help achieve compliance for
other parts of the standard as well.

7. RELATED WORK

OCL has been formally developed and updated by the Object Man-
agement Group as a standalone standard since 2006, but has been
available earlier as part of theUML specification. Given itsmaturity,
OCL is implemented in a variety of modeling tools [13] and is the
base language that other modeling languages are compared against.

The VQL was previously known as IncQuery [35] and has recently
been merged into the Viatra framework [14]. The goal of the VQL

Figure 15 The Viatra Query Language (VQL) implementation
of the queries in Figure 13.

48 A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50

Figure 16 The extension to the Model Interconnection Diagram
(MID).vql library in Figure 9

project is to provide a fast engine based on the Rete algorithm
[32] for incremental queries—queries that are evaluated frequently
with moderate modifications in between, to either the queries or
the queried models. Additionally, VQL queries have been used as a
derived way to link model elements in heterogeneous models [36],
as opposed to the structural nature of model relationships in our
megamodels.

The Epsilon Object Language (EOL) [15] is OCL-based, but is
designed to be metamodel independent. It can be used for model
management activities such as model querying in order to project
out information of interest to specific stakeholders (e.g., boolean
queries to determine whether two or more models are mutually
consistent, queries to select a subset of modeling elements satisfy-
ing a particular property, etc.). EOL satisfies the implementation-
specific requirements in Section 4.1 and is a potential candidate for
integration withMMINT.

The Hawk framework presented in Ref. [37] is a modular and scal-
able model indexing framework that enables developers to effi-
ciently perform queries over large collections of models stored in
version control systems. Thus, it is more geared towards distributed
models and queries, whereas our approach is centralized.

The work in Ref. [38] extends the scope of model management
beyond the boundaries of 3-level metamodeling architectures such
as MOF and EMF, and presents an approach for querying large
relational datasets using an imperative OCL-based transformation
language (EOL). Our work currently only considers EMF-based
models.

Other work has also considered querying large collections of mod-
els. For example, the work in Ref. [39] proposes an approach for
efficient querying of large process model repositories, the survey in
Ref. [40] considers approaches for efficiently querying large XML
data repositories, and Ref. [41] considers the techniques and chal-
lenges in managing large collections of business processes. Both
business processes and XML data repositories can be implemented
as megamodels of the relevant model types in our tool MMINT,
and can be queried using the approach we propose in this paper.
The authors of Ref. [42] present MorsaQL, a querying approach
especially designed and tailored for the Morsa repository, which
is a model repository that uses a No-SQL database backend. In
their work, they define four dimensions to evaluate query languages
(effectiveness, usability, safety, efficiency) and compare MorsaQL
with both OCL and IncQuery.

The ToolNet framework [43] tackles the problem of integrating
models and artifacts from heterogeneous tools. It defines a tools
layer with adapters to communicate with the various tools, a model
abstraction layer to abstract the tool models away from their tech-
nical details, and an integration layer with virtual model views of
the combined abstracted models. MMINT sits at the same level

as ToolNet’s integration layer, and uses Eclipse EMF as the model
abstraction layer. In this paper, we assume that the models con-
tained in our megamodels are either managed directly in Eclipse,
or imported from external tools through transformations. Keeping
the latter models synchronized with the external tools is outside the
scope of this paper, i.e., we assume a deep model integration rather
than a shallow one.

In Ref. [44], the authors highlight the benefits of using a model-
based approach for constructing an assurance case. They use a
weaving model (a simplified version of megamodel which focuses
on relationships) to link the assurance case and the design models.
They also demonstrate how to automatically generate the assurance
case by instantiating specific GSN patterns and using queries on the
weaving model.

Finally, the ANSYS Medini Analyze4 software implements key
safety analysis methods, e.g., HAZOP, FTA, FMEA, failure modes,
effects and diagnostic analysis (FMEDA), etc., in an Eclipse-based
environment. It is well integrated with other engineering tools, and
enables model-based safety analysis using standards like SysML. It
also offers complete end-to-end traceability and supports the use
of OCL, which could be used for querying the various artifacts
through the traceability links.

8. CONCLUSION AND FUTURE WORK

In safety-critical domains such as automotive, models are used
in different phases of software development (e.g., requirements,
design, testing, etc.), both at the product and at the process level.
Models are also used to capture safety-related information (e.g.,
(HARA, FTA, failuremodels and effects analysis (FMEA) and safety
cases). This creates a large collection of heterogeneous intercon-
nected models. Querying collections of heterogeneous models is a
complex and expensive activity lacking proper tool support.

In this paper, we described the process of deriving a safety case
using the LMS case study, and illustrated the use of querying to
aid during its construction, as well as its evolution after the system
undergoes changes. We then proposed a set of requirements for a
megamodel querying system. We compared OCL and VQL against
our query requirements, presented the implementation details for
integrating VQL into our tool MMINT and showed its use on the
LMS case study using six scenarios.We showed that VQL is a higher
level language that is easier to use and has a faster query execu-
tion engine than OCL. Finally, we demonstrated the use of queries
to check model compliance w.r.t. a fragment of the ISO 26262
standard.

Our work has a number of limitations:

• Correctness and Completeness: The correctness of the
presented queries can be reduced to the correctness of the
underlying VQL language [14]. We do not make any claims
about the completeness of the queries presented for the
automotive domain or ISO 26262.

• Applicability and Usefulness: We have shown the applicability
of our model querying approach in the automotive domain and

4https://www.ansys.com/products/systems/ansys-medini-analyze

A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50 49

demonstrated its application on questions from the ISO26262
standard. We believe this is a useful activity for practitioners
(particularly software safety engineers) but we have not yet
conducted a usability study.

In the future, we plan to experiment with more scenarios on top
of LMS to try different queries of different complexity levels. To
do so, we plan to expand the LMS megamodel with more safety-
related artifacts (e.g., hazard analysis, FTA, test results, etc.) and
write queries on top of them. This could lead to a better evalua-
tion of the approach, ideally with the involvement of our industrial
partner.

We also plan to expand our library ofmegamodel queries to address
more common patterns and let users concentrate on their domain
of expertise.

Another focus will be on the visualization of the results of the
queries. Currently, we show results textually and would like to
explore graphical ways of displaying them to aid with the usability
of the approach.

We would also like to capitalize on the incrementality feature of
the Viatra query engine to implement live queries. A live query is
a query that is always on, generating updated results each time a
change is made in the megamodel. Such a tool would help support
the safety engineers with their exploratory work—tweaking the sys-
tem and visualizing the effects in real time.

Finally, we have explored how to build and query a fragment of
ISO 26262 models. In the future, we plan to build on related work
[2,3,25] by incorporating the complete models of the standard into
our tool, so that queries can be constructed to ask questions that
involve information from the standard (e.g., related to ASIL decom-
position, types of evidence used to support ASIL levels, etc.). These
type of queries can be particularly useful during the construction of
a safety case.

ACKNOWLEDGMENTS

This work is funded by NSERC, OCE and General Motors. We would like
to thank Gehan Selim and our collaborators at the McMaster Center for
Software Certification for useful discussions.

REFERENCES

[1] International Organization for Standardization. ISO 26262: road
vehicles – functional safety. 1st version, International Organiza-
tion for Standardization, 2011. hhttps://www.iso.org/standards.
html

[2] Luo, Y, van den Brand, M, Engelen, L, Favaro, J, Klabbers, M,
Sartori, G. Extracting models from ISO 26262 for reusable safety
assurance. In International Conference on Software Reuse, Pisa,
Italy: Springer; 2013, pp. 192–207.

[3] Panesar-Walawege, RK, Sabetzadeh, M, Briand, L. Supporting the
verification of compliance to safety standards via model-driven
engineering: approach, tool-support and empirical validation. Inf
Softw Technol 2013;55;836–64.

[4] Kelly, T, Weaver, R. The goal structuring notation – a safety
argument notation. In 2004 International Conference on

Dependable Systems and Networks (DSN 2004), Workshop on
Assurance Cases, Florence, Italy, 2004.

[5] Emmet, L, Cleland,G.Graphical notations, narratives and persua-
sion: a pliant systems approach to hypertext tool design. In Pro-
ceedings of the Thirteenth ACM Conference on Hypertext and
Hypermedia, College Park, MA, USA: ACM; 2002, pp. 55–64.

[6] Habli, I, Ibarra, I, Rivett, RS, Kelly, T. Model-based assur-
ance for justifying automotive functional safety, technical report,
SAE 2010 World Congress & Exhibition, SAE, 2010.

[7] Gallina, B. Amodel-driven safety certificationmethod for process
compliance. In International Symposium on Software Reliability
Engineering, Naples, Italy: IEEE; 2014, pp. 204–9.

[8] Conrad, M, et al. Artifact-centric compliance demonstra-
tion for ISO 26262 projects using model-based design. In
GI-Jahrestagung, Citeseer: Braunschweig, Germany, 2012,
pp. 807–16.

[9] de la Vara, JL, Ruiz, A, Attwood, K, Espinoza, H, Panesar-
Walawege, RK, López, Á, del Río, I, Kelly, T. Model-based speci-
fication of safety compliance needs for critical systems: a holistic
generic metamodel. Inf Softw Technol 2016;72;16–30.

[10] Luo, Y, van den Brand, M, Engelen,L, Klabbers, M. From con-
ceptual models to safety assurance. In International Conference
on Conceptual Modeling, Atlanta, GA, USA: Springer; 2014,
pp. 195–208.

[11] Luo, Y, van den Brand, M, Engelen, L, Klabbers, M. A modeling
approach to support safety assurance in the automotive domain.
In: Selvaraj, H, Zydek, D, Chmaj, G, editors. Progress in systems
engineering, Cham, Switzerland: Springer; 2015, pp. 339–45.

[12] Salay, R, Kokaly, S, Di Sandro, A, Fung, NLS, Chechik, M. Het-
erogeneous megamodel management using collection operators,
Softw Syst Model 2020;19;231–60.

[13] Cabot, J. Gogolla, M. Object Constraint Language (OCL): a
definitive guide. In Formal Methods for Model-Driven Engi-
neering - 12th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems
(SFM 2012), Bertinoro, Italy; 2012, pp. 58–90.

[14] Varró, D, Bergmann, G, Hegedüs, Á, Horváth, Á, Ráth, I, Ujhe-
lyi, Z. Road to a reactive and incremental model transformation
platform: three generations of theVIATRA framework. Softw Syst
Model 2016;15;609–29.

[15] Kolovos, DS, Paige, RF, Polack, FAC. The Epsilon Object
Language (EOL). In Proceedings of European Conference on
Model Driven Architecture-Foundations and Applications, Bil-
bao, Spain: Springer; 2006, pp. 128–42.

[16] Di Sandro, A, Salay, R, Famelis, M, Kokaly, S, Chechik, M.
MMINT: agraphical tool for interactive model management. In
Proceedings of the MoDELS 2015 Demo and Poster Session co-
located with ACM/IEEE 18th International Conference onModel
Driven Engineering Languages and Systems (MoDELS 2015),
Ottawa, Canada, 2015, pp. 16–9.

[17] Di Sandro, A, Kokaly, S, Salay, R, Chechik, M. Querying auto-
motive system models and safety artifacts with MMINT and
Viatra. In 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Companion
(MODELS-C), Munich, Germany: IEEE; 2019, pp. 2–11.

[18] Bézivin, J, Jouault, F, Valduriez, P. On the need for megamod-
els. In Proceedings of the OOPSLA/GPCE: Best Practices for
Model-Driven Software Development workshop, 19th Annual
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, Canada, 2004.

hhttps://www.iso.org/standards.html
hhttps://www.iso.org/standards.html
https://doi.org/10.1007/978-3-642-38977-1_13
https://doi.org/10.1007/978-3-642-38977-1_13
https://doi.org/10.1007/978-3-642-38977-1_13
https://doi.org/10.1007/978-3-642-38977-1_13
https://doi.org/10.1016/j.infsof.2012.11.009
https://doi.org/10.1016/j.infsof.2012.11.009
https://doi.org/10.1016/j.infsof.2012.11.009
https://doi.org/10.1016/j.infsof.2012.11.009
https://doi.org/10.1145/513338.513354
https://doi.org/10.1145/513338.513354
https://doi.org/10.1145/513338.513354
https://doi.org/10.1145/513338.513354
https://doi.org/10.4271/2010-01-0209
https://doi.org/10.4271/2010-01-0209
https://doi.org/10.4271/2010-01-0209
https://doi.org/10.1109/ISSREW.2014.30
https://doi.org/10.1109/ISSREW.2014.30
https://doi.org/10.1109/ISSREW.2014.30
https://doi.org/10.1016/j.infsof.2015.11.008
https://doi.org/10.1016/j.infsof.2015.11.008
https://doi.org/10.1016/j.infsof.2015.11.008
https://doi.org/10.1016/j.infsof.2015.11.008
https://doi.org/10.1007/978-3-319-12206-9_16
https://doi.org/10.1007/978-3-319-12206-9_16
https://doi.org/10.1007/978-3-319-12206-9_16
https://doi.org/10.1007/978-3-319-12206-9_16
https://doi.org/10.1007/978-3-319-08422-0_50
https://doi.org/10.1007/978-3-319-08422-0_50
https://doi.org/10.1007/978-3-319-08422-0_50
https://doi.org/10.1007/978-3-319-08422-0_50
https://doi.org/10.1007/s10270-019-00738-9
https://doi.org/10.1007/s10270-019-00738-9
https://doi.org/10.1007/s10270-019-00738-9
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1109/MODELS-C.2019.00008
https://doi.org/10.1109/MODELS-C.2019.00008
https://doi.org/10.1109/MODELS-C.2019.00008
https://doi.org/10.1109/MODELS-C.2019.00008
https://doi.org/10.1109/MODELS-C.2019.00008

50 A. D. Sandro et al. / Journal of Automotive Software Engineering 1(1) 34–50

[19] Salay, R, Kokaly, S, Di Sandro, A, Chechik, M. Enriching meg-
amodel management with collection-based operators. In Pro-
ceedings of 2015 ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
Ottawa, Canada: IEEE; 2015, pp. 236–45.

[20] Salay, R, Chechik, M, Easterbrook, S, Diskin, Z, McCormick, P,
Nejati, S, Sabetzadeh, M, Viriyakattiyaporn, P. An eclipse-based
tool framework for software model management. In Proceeding
of Eclipse Workshop @ OOPSLA’07, Montreal, Canada; 2007, pp.
55–9.

[21] Steinberg, D, Budinsky, F, Merks, E, Paternostro, M. EMF: eclipse
modeling framework, Pearson Education; 2008.

[22] GSN, Goal Structuring Notation Working Group. GSN
community standard version 1; 2011. http://www.
goalstructuringnotation.info/

[23] Kokaly, S. Managing assurance cases in model based software sys-
tems, PhD thesis, Hamilton, Canada: McMaster University; 2019.

[24] Blazy, B, DeLine, A, Frey, B, Miller, M. Software Requirements
Specification (SRS): lane management system. CSE 435 Project,
Michigan State University, 2014.

[25] Aoki, T, Traichaiyaporn, K, Chiba, Y, Matsubara, M, Nishi, M,
Narisawa, F. Modeling safety requirements of ISO26262 using
goal trees and patterns. In Proceedings of InternationalWorkshop
on Formal Techniques for Safety-Critical Systems, Paris, France:
Springer; 2015, pp. 206–21.

[26] Mäder, P, Cleland-Huang, J. A visual language for modeling and
executing traceability queries. Softw Syst Model 2013;12;537–53.

[27] Maletic, JI, Collard, ML. TQL: aquery language to support trace-
ability. In Proceedings of ICSE’09 Workshop on Traceability in
Emerging Forms of Software Engineering, Vancouver, Canada:
IEEE; 2009, pp. 16–20.

[28] Cleland-Huang, J, Heimdahl, M, Hayes, JH, Lutz, R, Maeder, P.
Trace queries for safety requirements in high assurance systems.
In Proceedings of REFSQ’12, Essen, Germany: Springer; 2012, pp.
179–93.

[29] Rath, M, Rendall, J, Guo, JLC, Cleland-Huang, J, Mäder, P. Trace-
ability in the wild: automatically augmenting incomplete trace
links. In Proceedings of the 40th International Conference on
Software Engineering (ICSE 2018), Gothenburg, Sweden, 2018,
pp. 834–45.

[30] Kokaly, S, Salay, R, Cassano, V,Maibaum, T, Chechik, M. Amodel
management approach for assurance case reuse due to systemevo-
lution. In Proceedings of MoDELS’16, Saint-malo, France: ACM;
2016, pp. 196–206.

[31] Willink, ED. Re-engineering eclipse MDT/OCL for Xtext. ECE-
ASST 2010;36;1–15.

[32] Forgy, C. Rete: a fast algorithm for the many patterns/many
objects match problem. Artif Intell 1982;19;17–37.

[33] Bergmann, G, Horváth, Á, Ráth, I, Varró, D, Balogh, A,
Balogh, Z, Ökrös, A. Incremental evaluation of model queries
over EMF models. In Model Driven Engineering Languages and
Systems - 13th International Conference, MODELS 2010, Pro-
ceedings, Part I, Oslo, Norway; 2010, pp. 76–90.

[34] Ujhelyi, Z, Szoke, G, Horváth, Á, Csiszár, NI, Vidács, L,
Varró, D, Ferenc, R. Performance comparison of query-based
techniques for anti-pattern detection. Inf Softw Technol 2015;
65;147–65.

[35] Ujhelyi, Z, Bergmann, G, Hegedüs, Á, Horváth, Á, Izsó, B,
Ráth, I, Szatmári, Z, Varró, D. Emf-incquery: an integrated devel-
opment environment for livemodel queries. Sci Comput Program
2015;98;80–99.

[36] Hegedüs, Á, Horváth, Á, Ráth, I, Starr, RR, Varró, D. Query-
driven soft traceability links for models. Softw Syst Model
2016;15;733–56.

[37] Barmpis, K, Kolovos, D. Hawk: towards a scalable model index-
ing architecture. In Proceedings of theWorkshop on Scalability in
Model Driven Engineering, Budapest, Hungary: ACM; 2013, p. 6.

[38] Kolovos, DS,Wei, R, Barmpis, K. An approach for efficient query-
ing of large relational datasets with OCL-based languages. In
Proceedings of the Workshop on Extreme Modeling co-located
with ACM/IEEE 16th International Conference onModel Driven
Engineering Languages & Systems (MoDELS 2013), Miami,
Florida, USA, 2013, p. 48.

[39] Jin, T,Wang, J, La Rosa, M, Hofstede, AT,Wen, L. Efficient query-
ing of large process model repositories. Comput Ind 2013;64;
41–9.

[40] Gou, G, Chirkova, R. Efficiently querying large XML data repos-
itories: a survey. IEEE Trans Knowl Data Eng 2007;19;1381–403.

[41] Dijkman, RM, La Rosa, M, Reijers, HA. Managing large collec-
tions of business process models — current techniques and chal-
lenges. Comput Ind 2012;63;91–7.

[42] Pagán, JE,Molina, JG.Querying largemodels efficiently. Inf Softw
Technol 2014;56;586–622.

[43] Gleirscher, M, Ratiu, D, Schätz, B. Incremental integration of het-
erogeneous systems views. In 1st International ICST Conference
on Systems Engineering andModeling (ICSEM 2007), Herzliyya-
Haifa, Israel; 2007, pp. 50–9.

[44] Hawkins, R, Habli, I, Kolovos, DS, Paige, RF, Kelly, T. Weaving
an assurance case from design: a model-based approach. In 16th
IEEE International Symposium onHigh Assurance Systems Engi-
neering (HASE 2015), Daytona Beach, FL, USA; 2015, pp. 110–7.

https://doi.org/10.1109/MODELS.2015.7338254
https://doi.org/10.1109/MODELS.2015.7338254
https://doi.org/10.1109/MODELS.2015.7338254
https://doi.org/10.1109/MODELS.2015.7338254
https://doi.org/10.1109/MODELS.2015.7338254
https://doi.org/10.1145/1328279.1328291
https://doi.org/10.1145/1328279.1328291
https://doi.org/10.1145/1328279.1328291
https://doi.org/10.1145/1328279.1328291
https://doi.org/10.1145/1328279.1328291
http://www.goalstructuringnotation.info/
http://www.goalstructuringnotation.info/
https://doi.org/10.1007/978-3-319-29510-7_12
https://doi.org/10.1007/978-3-319-29510-7_12
https://doi.org/10.1007/978-3-319-29510-7_12
https://doi.org/10.1007/978-3-319-29510-7_12
https://doi.org/10.1007/978-3-319-29510-7_12
https://doi.org/10.1007/s10270-012-0237-0
https://doi.org/10.1007/s10270-012-0237-0
https://doi.org/10.1109/TEFSE.2009.5069577
https://doi.org/10.1109/TEFSE.2009.5069577
https://doi.org/10.1109/TEFSE.2009.5069577
https://doi.org/10.1109/TEFSE.2009.5069577
https://doi.org/10.1007/978-3-642-28714-5_16
https://doi.org/10.1007/978-3-642-28714-5_16
https://doi.org/10.1007/978-3-642-28714-5_16
https://doi.org/10.1007/978-3-642-28714-5_16
https://doi.org/10.1145/2976767.2976792
https://doi.org/10.1145/2976767.2976792
https://doi.org/10.1145/2976767.2976792
https://doi.org/10.1145/2976767.2976792
https://doi.org/10.14279/tuj.eceasst.36.444.524
https://doi.org/10.14279/tuj.eceasst.36.444.524
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1016/j.infsof.2015.01.003
https://doi.org/10.1016/j.infsof.2015.01.003
https://doi.org/10.1016/j.infsof.2015.01.003
https://doi.org/10.1016/j.infsof.2015.01.003
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1007/s10270-014-0436-y
https://doi.org/10.1007/s10270-014-0436-y
https://doi.org/10.1007/s10270-014-0436-y
https://doi.org/10.1145/2487766.2487771
https://doi.org/10.1145/2487766.2487771
https://doi.org/10.1145/2487766.2487771
https://doi.org/10.1016/j.compind.2012.09.008
https://doi.org/10.1016/j.compind.2012.09.008
https://doi.org/10.1016/j.compind.2012.09.008
https://doi.org/10.1109/TKDE.2007.1060
https://doi.org/10.1109/TKDE.2007.1060
https://doi.org/10.1016/j.compind.2011.12.003
https://doi.org/10.1016/j.compind.2011.12.003
https://doi.org/10.1016/j.compind.2011.12.003
https://doi.org/10.1016/j.infsof.2014.01.005
https://doi.org/10.1016/j.infsof.2014.01.005
https://doi.org/10.1109/ICSEM.2007.373334
https://doi.org/10.1109/ICSEM.2007.373334
https://doi.org/10.1109/ICSEM.2007.373334
https://doi.org/10.1109/ICSEM.2007.373334
https://doi.org/10.1109/HASE.2015.25
https://doi.org/10.1109/HASE.2015.25
https://doi.org/10.1109/HASE.2015.25
https://doi.org/10.1109/HASE.2015.25

	Querying Automotive System Models and Safety Artifacts: Tool Support and Case Study
	1 INTRODUCTION
	2 MOTIVATING EXAMPLE
	3 BACKGROUND
	3.1 Megamodels
	3.2 MMINT
	3.3 Safety Cases and ASILs
	3.4 Building the LMS Safety Case
	3.5 LMS Evolution

	4 QUERYING MEGAMODELS
	4.1 Query Engine Requirements
	4.2 Object Constraint Language
	4.3 Viatra Query Language
	4.4 Comparison of OCL and VQL
	4.5 Viatra Integration in MMINT
	4.5.1 Query abstraction layer
	4.5.2 MID VQL library

	5 QUERYING THE LMS SYSTEM
	5.1 Scenario 1: Building the Safety Case
	5.2 Scenario 2: Adding Traceability Links
	5.3 Scenario 3: Safety Case Change
	5.4 Scenario 4: System Model Change
	5.5 Scenario 5: Identifying Medium Risk Elements
	5.6 Scenario 6: Identifying Highly Interconnected Elements
	5.7 Comparing OCL and VQL Scenario Queries

	6 USING QUERIES FOR ISO 26262 COMPLIANCE
	6.1 Relevant Metamodels
	6.2 Compliance Queries in Natural Language
	6.3 Compliance Queries in VQL

	7 RELATED WORK
	8 CONCLUSION AND FUTURE WORK

