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1.  INTRODUCTION

In writing an article on Growth and Shape, one cannot help but 
link the treatment to geometrical entities that translate those con-
cepts into mathematical terms. They are the logarithmic spiral of 
Bernoulli, the curves of Lamé, the roses of Grandi, the lemniscate 
of Bernoulli and their generalizations.

The spiral has always been associated with growth phenomena, 
starting with that of the shell Nautilus widely studied in the book 
by Thompson [1] and in many subsequent works.

The Lamé’s curves have been generalized by J. Gielis in the 2D 
and 3D case in works [2,3] that have had wide international reso-
nance [4–7]. Grandi’s roses (also called Rhodoneas) and Bernoulli’s 
lemniscate have polar equations that lend themselves to being gen-
eralized, as is done here in Section 4.1. All these curves (or surfaces) 
of the plane (of space) lend themselves to creating mathematical 
forms that model natural forms [3].

In this article, starting from the spiral of Bernoulli, in the complex 
form, we make the obvious connection with the first and second 
kind Chebyshev polynomials, and with the roses of Grandi.

After that, having observed that roses also exist for rational index 
values, extensions of that polynomials are introduced in the case of 
fractional degree. Thus, irrational functions are found which are 
called pseudo-Chebyshev of first and second kind, because they 
continue to verify many of the properties of the corresponding 
Chebyshev polynomials.

Subsequently, using the links with Chebyshev polynomials of third 
and fourth kind and the good work [8], the pseudo-Chebyshev 
functions of third and fourth kind are also introduced and studied.

Particular importance is given, in Section 6, to the case of the 
half-integer degree, because, in this case, the pseudo-Chebyshev 
functions verify not only the corresponding recurrence relations 
and differential equations, but also the orthogonality properties, in 
the interval [−1, 1], with respect to the same weights of the classical 
polynomials.

In this survey we limited ourselves to considering only the most 
elementary properties of the pseudo-Chebyshev functions, which 
can be proven starting from trigonometric identities, that are 
known to secondary school students, so as to make the treatment 
usable to a wide audience. Moreover, the use of higher tools seems 
to be unessential in the context of this study, which deals with 
functions of elementary nature, connected in a simple way to trig-
onometric functions.
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A B S T R AC T
In recent works, starting from the complex Bernoulli spiral and the Grandi roses, sets of irrational functions have been introduced 
and studied that extend to the fractional degree the polynomials of Chebyshev of the first, second, third and fourth kind. The 
functions thus obtained are therefore called pseudo-Chebyshev. This article presents a review of the elementary properties of 
these functions, with the aim of making the topic accessible to a wider audience of readers. The subject is presented as follows.  In 
Section 2 a  review of spiral curves is given. In Section 3 the main properties of the classical Chebyshev polynomials are recalled. 
The Grandi (Rhodonea) curves and possible extensions are introduced in Section 4, and a method for deriving new curves, 
changing cartesian into polar coordinates, is touched on. The possibility to consider the Grandi curves even for rational indexes 
allows to introduce in Section 5 the pseudo-Chebyshev functions, which are derived from the Chebyshev polynomials assuming 
rational values for their degree. The main properties of these functions are shown, including recursions and differential equations. 
In particular, the case of  half-integer degree is examined in Section 6 since, in this case, the pseudo-Chebyshev functions verify 
even the orthogonality property. As a consequence, new system of irrational orthogonal functions are introduced.
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2.  SPIRALS

The spiral symbol is found in every ancient culture, all over the 
world (see e.g. Figures 1, 2). The spiral is a sacred symbol, possibly 
reminding us the evolution of our life.

The first attempt to describe a spiral is due to Theodore of 
Cyrene, a mathematician from the school of Pythagoras, in the 
5th century bc.

By the mathematical point of view spirals are described by polar 
equations.

Many information on this subject can be found in Lockwood [9] 
and in Thompson [1], where applications to natural shapes (see e.g. 
Figure 3) are deeply analyzed. In a recent article [10] a Bernoulli 
spiral in complex form has been related to the Grandi (Rhodonea) 
curves and Chebyshev polynomials.

Connection with curvature can be found in Gielis et al. [11].

2.1.  Archimedes vs Bernoulli Spiral

The Archimedes (Figure 4) spiral [12] (Figure 5) has the polar 
equation:

		  r q q= , ( > 0, ).a a ∈ IR+ � (1)

If q > 0 the spiral turns counter-clockwise, if q < 0 the spiral turns 
clockwise. Bernoulli’s (logarithmic) spiral [13] (Figure 5) has the 
polar equation

	     r q rq= , ( , ), = .ab a b
abÎ IR+ æ

è
ç

ö
ø
÷log � (2)

Varying the parameters a and b one gets different types of spirals.

The size of the spiral depends on a, while the term b controls the 
verse of rotation and how it is “narrow”.

Being a and b positive costants, there are some interesting cases.  
The most popular logarithmic spiral is the harmonic spiral, in which 
the distance between the spires is in harmonic progression, with 

ratio f = 5 1
2
− , that is the “Golden ratio” of the unit segment.

The logarithmic spiral was discovered by René Descartes in 1638, 
and studied by Jakob Bernoulli (1654–1705) (Figure 6).

Figure 1 | Ancient Crete island vases.

Figure 5 | Archimedes vs Bernoulli spiral.

Figure 2 | A a well of Nazca culture.

Figure 3 | Spirals - natural shapes [29].

Figure 4 | Archimedes (traditional) and his death by N. Barabino.
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Pierre Varignon (1654–1722) called it spiral equiangular, because:

	 1.	 There is a constant angle between the tangent at a given point 
and the polar radius passing through the same point.

	 2.	 The inclination angle with respect to concentric circles cen-
tered at the origin is also constant.

It is a first example of a fractal. As it is written on J. Bernoulli’s 
tomb: Eadem Mutata Resurgo (but the spiral represented there is of 
Archimedes type).

2.2. � Fermat Spiral, Fibonacci and  
Other Types of Spirals

The Fermat (parabolic) spiral (Figure 7) has polar equation:

			   r q= .1/2±a � (3)

Fermat’s spiral suggests the possibility of introducing other kind of 
spiral graphs.

In fact there is a straightforward correspondence, between 
cartesian and polar systems of coordinates, which transforms  
y = f(x) functions of the (x, y) plane into polar curves r = f (q ) of 
the (r, q ) plane.

In this planar transformation, the Archimedes spiral r = aq  
corresponds to the straight line y = ax, the Bernoulli spiral r = abq 
to the exponential function y = abx, and the Fermat spiral to the 
parabolic function y a x= .

Then, putting:

	   r q= , ( , , 0),/a m n nm n positive integers ¹ � (4)

one gets a parametric family of spirals, at varying m and n.

Notice that, if m > n, so that the exponent is >1, the coils of spiral 
are widening (Figure 7), while if m < n being the exponent <1, the 
coils of spiral are shrinking (as in Fermat’s case).

Other possibilities are:

	 1.	 To assume q m/n with m/n < 0; in this case the coils are wrapped 
around the origin.

	 2.	 To use a graph with horizontal asymptotes, in order to get an 
asymptotic spiral (Figure 8).

In what follows, we consider a “canonical form” of the Bernoulli 
spirals assuming a = 1, b = en, that is, the simplified polar equation:

		      r q= , ( ).e nn ÎN � (5)

2.3.  The Complex Bernoulli Spiral

We now introduce the complex case, putting

		    r r r= Â + Ái , � (6)

and considering a Bernoulli spiral of the type:

		  r q qq= = .e n i nin cos sin+ � (7)

Therefore, we have:

	     r r q r r q1 2= = , = = .Â Ácos sinn n � (8)

The curves with polar equation:

		            r q= ( )cos n � (9)

are known as Rhodonea or Grandi curves, in honour of G. G. Grandi 
(1671–1742) (Figure 12), who communicated his discovery to G. W. 
Leibniz (1646–1716), in 1713.

Curves with polar equation: r = sin(nq ) are equivalent to the pre-
ceding ones, up to a rotation of p/(2n) radians.Figure 6 | René Descartes by F. Hals and Jakob Bernoulli.

    Figure 7 | Fermat spiral r = q 1/2,          Spiral r = q 3/2.     Figure 8 | Spiral r = q −1/2,          Asymptotic spiral r = arctan(q ).
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The Grandi roses display

•• n petals, if n is odd.

•• 2n petals, if n is even.

By using Eq. (9) it is impossible to obtain, roses with 4n + 2 (n ∈ N 
È {0};) petals.

Roses with 4n + 2 petals can be obtained by using the Bernoulli 
lemniscate and its extensions. More precisely,

•• for n = 0, a two petals rose comes from the equation r = cos1/2(2q ) 
(the Bernoulli lemniscate),

•• for n ≥ 1, a 4n + 2 petals rose comes from the equation  
r = cos1/2[(4n + 2)q ].

Further very general extensions of the Bernoulli lemniscate are pre-
sented in Section 4.1.

3.  CHEBYSHEV POLYNOMIALS

P. Butzer and F. Jongmans, in their biography of Chebyshev [14],  
assert that Pafnuty Lvovich Chebyshev (Figure 9) was the creator in  
St. Petersburg of the greatest Russian mathematical school before 
the revolution.

Starting from the equations:

      ( ) = , ( ) = ( ) ( ),e e t i t nt i ntit n int ncos sin cos sin+ + � (10)

and using the binomial expansion, we find:
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By comparing these equations with (10), we find:

	     cos cos ( cos )( ) = ( 1) 2 1
=0

2
2 2nt
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n
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and

	 sin
sin cos ( cos( ) = ( 1) 2 1 1
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Putting x = cost, in Eqs. (11) and (12) we find two polynomials, in 
the x variable, of degrees respectively n and n − 1, which are the 
first and second kind Chebyshev polynomials [15,16]:

   T x n x
n
h x xn

h

n

h n h( ) := ( ) = ( 1) 2 (1 )
=0

2
2 2cos arccos

é

ë
ê
ù

û
ú

-å - æ

è
ç

ö

ø
÷ - hh , � (13)

 U x
n x

x
n

hn
h

n

h
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-é

ë
ê

ù

û
ú
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=0

1
2

( ) :=
( )
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= 1 2
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( )
arccos

arccos 11 (1 ) .2 1 2æ

è
ç

ö

ø
÷ -- -x xn h h � (14)

3.1. � Basic Properties of the Chebyshev 
Polynomials of the First Kind

The trigonometric equation

cos cos cos cos(( 1) ) (( 1) ) = 2 ( )n t n t t nt+ + −

gives the recurrence relation:

		  T x xT x T xn n n+ −−1 1( ) = 2 ( ) ( ). � (15)

By using the initial values:

		  T x T x x0 1( ) = 1, ( ) = ,

the subsequent polynomials are found:

T x x
T x x x
T x x x
T x x x x
T

2
2

3
3

4
4 2

5
5 3

6

( ) = 2 1
( ) = 4 3
( ) = 8 8 1
( ) = 16 20 5

-
-
- +
- +

(( ) = 32 48 18 1
( ) = 64 112 56 7
( ) = 128 2

6 4 2

7
7 5 3

8
8

x x x x
T x x x x x
T x x

- + -
- + -
- 556 160 32 16 4 2x x x+ - +

…

Note that:

•• The leading coefficient of Tn(x) is equal to 2n−1.

•• The polynomials T2n(x) are even functions and the T2n+1(x) are 
odd functions.

•• " n T Tn n
nÎ - -N, (1) = 1, ( 1) = ( 1) .

•• The n zeros of Tn(x) are real, distinct and internal to the interval 
[−1, 1].

More precisely, they are given by:

	   x k
n

k nn k, = (2 1)
2

, ( = 0, 1, , 1),cos +æ
è
ç

ö
ø
÷ -
p

… � (16)
Figure 9 | Pafnuty Lvovich Chebyshev (1821–1894).
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In fact, we have:

	 | ( ) | = | ( |= (2 1)
2

= 0., ,T x n x kn n k n kcos cosarccos +æ
è
ç

ö
ø
÷
p

•• The polynomials {Tn(x)} are orthogonal in the interval [−1, 1], 
with respect to the weight: (1 − x 2)−1/2.

In fact, from the orthogonality of the cosine functions:

0
( ) ( ) = 0, ( ),

p

ò ¹cos cosnt mt dt m nse

by the change of variable: t = arc cosx, we find:

	   
-ò -

¹
1

1

2

( ) ( )

1
= 0, ( ).

T x T x

x
dx m nn m if � (17)

We furthermore have:

	
−∫ −1

1

2

1

1
=

x
dx p � (18)

	
-ò ò

-1

1 2

2 0

2( )

1
= ( ) =

2
, ( ).T x

x
dx nt dt nn

p pcos ÎN � (19)

3.2. � Basic Properties of the Chebyshev 
Polynomials of the Second Kind

In a similar way, the same recurrence relation holds for the second 
kind polynomials:

		  U x xU x U xn n n+ −−1 1( ) = 2 ( ) ( ). � (20)

By using the initial values:

U x U x x0 1( ) = 1, ( ) = 2 ,

the subsequent polynomials are found:

U x x
U x x x
U x x x
U x x x x

2
2

3
3

4
4 2

5
5 3

( ) = 4 1
( ) = 8 4
( ) = 16 12 1
( ) = 32 32 6

−
−
− −
− −

UU x x x x
U x x x x x
U x x

6
6 4 2

7
7 5 3

8

( ) = 64 80 24 1
( ) = 128 192 80 8
( ) = 256

− − −
− + −

88 6 4 2448 240 40 1− + − +x x x
…

The polynomials {Un(x)} are orthogonal in the interval [−1, 1], with 
respect to the weight: (1 − x2)1/2:

	
-ò - ¹

1

1 2( ) ( ) 1 = 0, ( ).U x U x x dx m nn m if � (21)

We furthermore have:

	     
-ò -

1

1 2 2( ) 1 =
2

, ( ).U x x dx nn
p

ÎN � (22)

Connections with the polynomials of the first kind

	     
(1 ) ( ) = ( ) ( ),

( ) = ( ) ( ).

2
1 1

1

- -
-

- +

-

x U x xT x T x
T x U x xU x

n n n

n n n
� (23)

The second kind Chebyshev polynomials play an important role 
in representing the powers of a 2 × 2 non singular matrix [17,18]. 
Extension of this polynomial family to the multivariate case has 
been considered for representing the powers of a r × r (r ≥ 3) 
non-singular matrix (see [18,19]).

Remark 3.1. Chebyshev polynomials are a particular case of the 
Jacobi polynomials P xn

( , )( )a b , which are orthogonal in the interval 
[−1, 1] with respect to the weight (1 − x)a(1 + x)b. More precisely, 
the following equations hold:

T x P x U x P xn n n n( ) = ( ), ( ) = ( ).( 1/2, 1/2) (1/2,1/2)− −

Therefore, properties of the Chebyshev polynomials could be 
deduced in a more general framework of the hypergeometric func-
tions. However, in this approach the connection with trigonomeric 
function disappears. In this article, dealing with elementary func-
tions, we use only elementary methods, in order to make the topic 
accessible to a wider audience of readers. In such a way, we avoid to 
shoot flies with cannons.

Remark 3.2. In connection with interpolation and quadrature 
problems, another couple of Chebyshev polynomials have been 
considered. They correspond to different choices of weights:

V x P x W x P xn n n n( ) = ( ), ( ) = ( ).(1/2, 1/2) ( 1/2,1/2)− −

These were called by Gautschi [20] the third and fourth kind 
Chebyshev polynomials, and will be considered in what follows.

3.3. � Basic Properties of the Chebyshev 
Polynomials of Third and Fourth Kind

The third and fourth kind Chebyshev polynomials have been 
studied and applied by several scholars (see e.g. [8,21]), because 
they are useful in quadrature rules, when the singularities occur 
only at one of the end points (+1 or −1) (see [22]). Furthermore, 
recently they have been applied in Numerical Analysis for solving 
high odd-order boundary value problems with homogeneous or 
nonhomogeneous boundary conditions [21].

The third and fourth kind Chebyshev polynomials are defined in 
[−1, 1] as follows:

		

V x
n x

x
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n

n
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2
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Figure 13 | Rhodonea cos p
q
q

æ

è
ç

ö

ø
÷ .

Figure 10 | Vk(x), k = 1, 2, 3, 4. 1. violet, 2. brown, 3. red, 4. blue.

Figure 11 | Wk(x), k = 1, 2, 3, 4. 1. violet, 2. brown, 3. red, 4. blue.

Figure 12 | G. G. Grandi and G. W. Leibniz.

Since Wn(x) = (−1)nVn(−x), as it can be see by their graphs (Figures 
10 and 11), the third and fourth kind Chebyshev polynomials are 
essentially the same polynomial set, but interchanging the ends of 
the interval [−1, 1].

The orthogonality properties hold [8]:

 
- -ò ò

+
-

-
+1

1

1

1

,( ) ( )
1
1

= ( ) ( )
1
1

= ,V x V x
x
x

dx W x W x
x
x

dxn m n m n mpd  �

� (d is the Kronecher delta).

One of the explicit advantages of Chebyshev polynomials of third 
and fourth kind is to estimate some definite integrals as

− −∫ ∫
+
−

−
+1

1

1

11
1

( ) 1
1

( )x
x

f x dx x
x

f x dxand

with the precision degree 2n − 1, by using the n interpolatory points 

x k
nk = (2 1)

2 1
cos −

+
p

, (k = 1, 2, ..., n), in the interval [−1, 1] [7,21,22].

4.  THE GRANDI (RHODONEA) CURVES

A few graphs of Rhodonea curves are shown in Figures 13–14.

Figure 14 | Rodoneas cos cos1
8

3
8

q qæ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷and .

4.1.  Cartesian vs Polar Coordinates

The study of curves is of great importance for the modelling of nat-
ural objects and has attracted many scholars [9,23]. In particular, 
the so-called superformula by Gielis [2,3,5] has made it possible to 
construct the most diverse figures by varying a few parameters (see 
also [4,6,24]).
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The curves obtained in this way can be interpreted as a generaliza-
tion of the Grandi roses.

A first example of this kind of figures can be found in 
Thompson [1] (Figure 504, page 1047), where the polar equation  
r = sin(q /2)sin(nq) can be found.

A infinite number of non-symmetric possibilities (generalizing in 
particular the Bernoulli lemniscate), are obtained by starting from 
the above circular functions multiplied by powers of the x variable 
(of polynomials Pq(x) of degree q), and taking positive rational 
numbers for the parameters m, n:

y x mx nx h k m n
y P x mx nx

q h k

q
h k

= ( ) ( ), ( , , , ),
= ( ) ( ) ( ),

sin cos
sin cos

∈ K+

(( , , , ),h k m n ∈ K+

therefore, finding the polar equations:

r q q q
r q q q

= ( ) ( ), ( , , , ),
= ( ) ( ) ( ),

q h k

q
h k

m n h k m n
P m n

sin cos
sin cos

∈ K+

(( , , , ).h k m n ∈ K+

The graphic results obtained in these cases recall the inflatable  
balloons of children’s games. Note that in this case, the resulting 
curve may depend on the considered interval.

A few examples of this type are shown in Figures 18–22.

5. � PSEUDO-CHEBYSHEV FUNCTIONS  
OF THE FIRST, SECOND, THIRD, 
FOURTH KIND

5.1. � Basic properties of the First and  
Second Kind

We put, by definition:

		  T x p
q

xp
q

( ) = ( ) ,cos arccos
æ

è
ç

ö

ø
÷ � (25)

	   1 ( ) = ( ) ,2-
æ

è
ç

ö

ø
÷x U x p

q
xp

q

sin arccos � (26)

where p and q are integer numbers, (q ≠ 0).

Note that definitions (25) and (26) hold even for negative indexes, 
that is for p/q < 0, according to the parity properties of the trigono-
metric functions.

      Figure 15 | r = cos(q )sin2(q ),            r = sin(7q )cos(2q ).

By exploiting the correspondence, mentioned in Section 2.2, 
between curves in the cartesian or polar form, we can find further 
graphs both of symmetric and asymmetric type.

In what follows we show some symmetric graphs, which does not 
coincide with the shapes of Grandi curves, and several others which 
are not symmetric. These graphs generalize in a wide way both the 
Grandi curves and the Bernoulli lemniscate recalled in Section 2.3.

To this aim, we consider first circular functions of the type:

y mx nx h k m n m nh k= ( ) ( ), ( , , , , ),sin cos Î ¹N+

The corresponding polar curves are:

r q q= ( ) ( ), ( , , , , ),sin cosh km n h k m n m nÎ ¹N+

and, by choosing m, n, h, k as particular positive integers, we find 
the few graphs depicted in Figures 15–17.

Of course we have more examples by changing sine by cosine or 
increasing the number of sine/cosine factors in the above trigono-
metric products.

      Figure 16 | r = cos(3q )cos(5q ),            r = sin2(q )sin(3q ).

      Figure 17 | r = sin(2q )cos(9q ),        r = cos(q )cos(3q )sin(5q ).       Figure 18 | r = q sin(3q )cos(q ),            r = q  2 sin(q )cos(3q ).
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Figure 21 | r = q  sin(q /2)cos2(2q ) & r = q  sin(q /2)cos2(3q ) in [0, 2p].

Figure 22 | r = (q 2 + 1)sin(q /2)cos(2q ) in [0, 2p] & in [0, 4p].

  Figure 19 | r = (2θ2 − 1)cos(q )sin(3q ),      r = (4q 3−3q)cos(2q )sin(q ).

Figure 20 | r = cos(q /2)sin2(3q ) in [0, 2p] & in [0, 4p].

Proof - Write Eq. (27) in the form:

T x T x xT xp
q

p
q

p
q

+ −
+

1 1
( ) ( ) = 2 ( ),

then use definition (25) and the trigonometric identity:
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Theorem 5.2. The first kind pseudo-Chebyshev functions Tp/q(x) sat-
isfy the differential equation:
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so that Eq. (28) follows.

5.3. � Pseudo-Chebyshev Functions of the 
Second Kind

The following theorems hold:

Theorem 5.3. The pseudo-Chebyshev functions U xp
q

( )  satisfy the 
recurrence relation
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Proof - Write Eq. (29) in the form:
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Theorem 5.4. The pseudo-Chebyshev functions y x U xp
q

( ) = ( )  sat-
isfy the differential equation
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The proof is obtained in a similar way to that of the first kind   
functions.

5.2. � Pseudo-Chebyshev Functions of the 
First Kind

The following theorems hold:

Theorem 5.1. The pseudo-Chebyshev functions Tp/q(x) satisfy the 
recurrence relation
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5.4. � Basic Relations of the Pseudo-
Chebyshev Functions of Third  
and Fourth Kind

According to Eq. (24), we put by definition:
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Theorem 5.5. The third and fourth kind pseudo-Chebyshev func-
tions are related to the 1st and 2nd kind ones by the equations:
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Proof - It is sufficient to use the addition formulas for the cosine 
and sine functions.

Therefore, we can derive the equations:
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5.5.  Some General Formulas

By using cosine addition formulas, putting:
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and by using the sine addition formulas:
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5.5.1.  Particular results
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Combining the above equations, we find:
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5.6. � Links with the Pseudo-Chebyshev 
Functions

Actually, the definitions of the third and fourth kind Chebyshev 
polynomials are as follows:
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Therefore, we find the equations:
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6.  THE CASE OF HALF-INTEGER DEGREE

In what follows, we consider the case of the half-integer degree, 
which seems to be the most interesting one, since the resulting 
pseudo-Chebyshev functions satisfy the orthogonality properties 
in the interval [−1, 1] with respect to the same weights of the corre-
sponding Chebyshev polynomials [25].

Definition: Let, for any integer k:
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Note that the above definition holds even for k + 1/2 < 0, taking into 
account the parity properties of the circular functions.

The pseudo-Chebyshev functions Tk+1/2 (x), Uk−1/2 (x), Vk+1/2 (x) and 
Wk+1/2 (x) can be represented, in terms of the third and fourth kind 
Chebyshev polynomials as follows:
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We will show that, in the case of half-integer degree, the  
pseudo-Chebyshev functions satisfy not only the recurrence  
relations and differential equations analogues to the classical ones, 
but even the orthogonality properties.

6.1. � Orthogonality of the Tk+1/2 (x) and  
Uk+1/2 (x) Functions

A few graphs of the T
k +

1
2

 functions are shown in Figure 23.

Theorem 6.1. The pseudo-Chebyshev functions Tk+1/2 (x) satisfy the 
orthogonality property:
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where h, k are integer numbers,
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A few graphs of the Uk+1/2 functions are shown in Figure 24.

Figure 23 | Tk+1/2 (x), k = 1, 2, 3, 4. 1. green, 2. red, 3. blue, 4. orange.

Figure 24 | Uk+1/2 (x), k = 1, 2, 3, 4. 1. green; 2. red; 3. blue; 4. orange.

Theorem 6.2. The pseudo-Chebyshev functions U x
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( )  satisfy the 
orthogonality property:
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Proof - We prove only Theorem 6.1, since the proof of Theorem 6.2 
is similar.

From the Werner formulas, we have:
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Theorem 6.3. The pseudo-Chebyshev functions Vk+1/2(x) verify the 
differential equation:
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The orthogonality property holds:
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6.4. � The Fourth Kind Pseudo-  
Chebyshev Wk+1/2

The fourth kind pseudo-Chebyshev functions satisfy the recurrence 
relation:

		

W x xW x W x

W x x

k k k+ - -

±

-

±
-

ì

í
ïï

î
ï
ï

1
2

1
2

3
2

1
2

( ) = 2 ( ) ( ),

( ) = 1
2

.
 � (58)

Theorem 6.4. The pseudo-Chebyshev functions Wk+1/2 (x) verify the 
differential equation:
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The orthogonality property holds:
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6.5.  Explicit Forms

Theorem 6.5. It is possible to represent explicitly the pseudo-Chebyshev 
functions as follows:
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6.6.  Location of Zeros

By Eq. (48), the zeros of the pseudo-Chebyshev functions Tk+1/2(x) 
and Vk+1/2 (x) are given by

6.2. � The Third and Fourth Kind Pseudo-
Chebyshev Functions

The results of this section are based on the excellent survey by 
Aghigh et al. [8]. By using that article, it is possible to derive, in an 
almost trivial way, the links among the pseudo-Chebyshev func-
tions and the third and fourth kind Chebyshev polynomials.

We recall here only the principal properties, without proofs. Proofs 
and other properties are reported in Cesarano et al. [27]. In Figures 
25 and 26, we show the graphs of the first few third and fourth kind 
pseudo-Chebyshev functions.

6.3.  The Third Kind Pseudo-Chebyshev Vk+1/2

The third kind pseudo-Chebyshev functions satisfy the recurrence 
relation:
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Figure 25 | Vk+1/2 (x), k = 1, 2, 3, 4, 5. 1. grey, 2. red, 3. blue, 4. orange, 5. violet.

Figure 26 | Wk+1/2 (x), k = 1, 2, 3, 4, 5. 1. red, 2. blue, 3. orange, 4. violet, 5. grey.
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and the zeros of the pseudo-Chebyshev functions Uk+1/2(x) and 
Wk+1/2 (x) are given by
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furthermore, the Wk+1/2 (x) functions always vanish at the end of the 
interval [−1, 1].

Remark 6.6. More technical properties as the Hypergeometric 
representations and the Rodrigues-type formulas are reported in 
Cesarano et al. [26].

6.7. � Links with First and Second Kind  
Chebyshev Polynomials

Theorem 6.7. The pseudo-Chebyshev functions are connected with 
the first and second kind Chebyshev polynomials by means of the 
equations:
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Proof - The results follow from the equations:
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(see [8]), by using definitions (49).

Remark 6.8. Note that the first equation in (65), extends the known 
nesting property verified by the first kind Chebyshev polynomials:

		      T T x T xm n mn( ) = ( ).( ) � (67)

This property, already considered in Brandi and Ricci [27] for 
the first kind pseudo-Chebyshev functions, actually holds in gen-
eral, as a consequence of the definition Tk (x) = cos(k arccos(x)). 
Note that this composition identity even holds for the first kind 
Chebyshev polynomials in several variables, as it was proven in 
Ricci [28].

7.  CONCLUSION

The growth of living organisms is often described by the Bernoulli’s 
logarithmic spiral, which is one of the first examples of fractals.  

The study of natural forms (see e.g. Bini et al. [29]) is commonly 
associated with mathematical entities like extensions of Lamé’s 
curves, Grandi’s roses, Bernoulli’s lemniscate, etc.

In this article, it has been shown that innumerable plane forms 
can be described by means of polar equations that extend some 
of the above mentioned geometrical entities. Moreover, the con-
sideration of Grandi’s roses in the case of fractional indexes gives 
rise, in a natural way, to mathematical functions that generalize to 
the case of fractional degree the classical Chebyshev polynomials.  
The resulting functions, called of pseudo-Chebyshev type, verify 
many properties of the corresponding polynomials and, in the case 
of half-integer degree, also the orthogonality properties.
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