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ABSTRACT
Autonomous driving and e-mobility are swiftly becoming not only the work of science fiction or popular science, but a reality.
A key focus of manufacturers and suppliers in the automotive domain is of course to specify systems that implement this reality.
Often, scenarios at type-level are used throughout the development process to specify system behavior and interaction within
the car, as scenario models are comparatively easy to understand and can easily be subjected to manual validation. However,
autonomous driving and e-mobility require interaction not just of systems within the same car, but collaboration between multi-
ple cars as well as between cars and miscellaneous road infrastructure (e.g., smart road signs). The car becomes a Cyber-Physical
System that dynamically forms collaborating networks at runtime with other Cyber-Physical System to create functionality that
goes beyond the scope of the individual vehicle (e.g., resolve a traffic jam). Consequently, a plethora of possible compositions
of such a network exist and must be specified and validated completely to assure their adequate and safe execution at runtime.
Doing this at type-level with scenario models becomes prohibitively tedious, error prone, and likely results in unrealistic devel-
opment cost. To combat this issue, we investigate the use of multi-level Message Sequence Charts to allow for specifying inter-
action scenarios between collaborative Cyber-Physical System in a network of collaborating automotive Cyber-Physical System.
To assist the developer in systematically defining multi-level Message Sequence Charts, we propose two processes. The result-
ing diagrams use a mixture of type and instance-level abstractions within one conceptual diagram. This allows reducing the
required effort to manually validate the adequacy of scenarios to a manageable amount because information within the scenarios
can be validated in batches. At the same time, instance-level defects become more obvious. Evaluation results from a controlled
experiment show that multi-level Message Sequence Charts contribute to effectiveness and efficiency of manual validation for
collaborative automotive Cyber-Physical System.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Autonomous driving and e-mobility seem to be the next milestone
in the automotive industry [1]. This new territory comes with new
challenges, particularly for software engineering [2]. For example,
as cars roam traffic autonomously, they must interact with other
systems such as other cars and smart traffic infrastructure to deal
traffic situations that go beyond each individual car’s ability to deal
with, like the resolution of traffic jams through the interchange of
distance and speed telemetry among cars with smart automotive
cruise controls [3] (much like IoT systems [4]). In this sense, cars
become Cyber-Physical Systems (CPSs), as they functionally col-
laborate with other systems around them (cf. [5]). To specify the
functionality of automotive systems, often scenario models are used
at the type-level to validate their correct and adequate behavior.
Yet, as cars functionally collaborate with other automotive CPS,
validating functionality is no longer a concern of the individual
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system, but concerns the collaborative network composed of sev-
eral systems (see [5–8]). This is especially the case when functional
inadequacies (in the following “defects”) only occur in certain run-
time interactions, e.g., when at least two systems of a certain type
interact with one another (like in the traffic jam resolution example
above). In such cases, there is a risk that defects may remain covert,
as they are not displayed explicitly in a type-level model.

1.1. Validation of Collaborative CPS

A central aspect becomes that car’s functional dependence on other
external systems. For example, cyber-physical adaptive cruise con-
trols [3] perform certain tasks independent from one another (e.g.,
selecting the speed at which to move the vehicle), but require the
specification of behavior in collaboration with external systems
(e.g., to navigate at a common velocity given other cars in the
vicinity).

This interdependence must not only be (semi-automatically) ver-
ified (e.g., to check functional correctness [9]), but also manually
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validated to ensure adequate functional [10, 11] adequacy.1 In fact,
many safety standards (e.g., [12–14]) require manual validation
(through, e.g., reviews) of all design artifacts at certain points dur-
ing development. For this purpose and depending on the OEM
and system under development, Fagan inspections [15,16], walk-
throughs [17], N-fold inspections [18], checklist-based inspections
[19], or other manual validation techniques [20] are conducted to
identify defects in requirements and development artifacts as early
as possible.

However in case of such collaborative automotive CPS, inspecting
the multitude of traffic scenarios (see, e.g., [21]) becomes a very
tedious, time-consuming, and error-prone task. Nevertheless, it is
essential to adequately consider all possible interaction scenarios
that can occur at run time [22]. Interaction scenarios differ w.r.t.
the number of collaborating cars, the different system types collab-
orating (car, smart road sign, traffic guidance system, etc.), or the
surrounding systems in the context (how many cars there are in the
traffic jam), etc. [23]

1.2. Need for Multi-Level Modeling

A typical solution to the multitude of concrete scenarios to be con-
sidered is the use of more abstract scenarios on type-level. How-
ever, the validator will detect some defects only when considering a
concrete situation, which is not explicitly depicted in abstract type-
level information [24]. For instance, there is a risk that the nego-
tiated convoy velocity in a traffic jam is too high might only be
recognizable in certain traffic situation (e.g., if the traffic jam
occurred due to a construction site). Hence, in the case of auto-
motive CPS, the interaction scenarios between CPS must be closely
investigated. Yet, concrete interaction scenarios may comprise a
vast amount of individual cars [21], external systems of different
types, revisions, and vendors [23]. In consequence, the possible run
time interactions can conceivably become infinite, such that the
number of concrete instance models (depicting individual interac-
tion scenarios) becomes (countably) infinite as well.

Hence, considering all possible interaction scenarios during the
engineering of these systems is not realistic. Therefore, models
are needed that allow investigating interaction scenarios on an
instance-level, while at the same time limiting the number of sce-
narios to be investigated. This must be done in a way that accurately
depicts inadequate interactions between system instances, without
abstracting them away to type-level. Therefore, multi-level model-
ing provides a solution approach that allows to define models on
a multi-level, i.e., defining some common aspects on the type-level
to limit the number of models to be investigated, while defining
interaction aspects on the instance-level that need to be investigated
closely.

1.3. Contribution

This paper investigates the use of multi-level Message Sequence
Charts (ml-MSC) to improve the validation of collaborative auto-
motive CPS. We propose two processes to assist the developer in

1In the following, we adopt Glinz’ [11,10] differentiation between a sys-
tem’s ability to operate provably correct and a system’s functionally
adequate behavior given an operational scenario.

making conscious choices about which pieces of information to
include from the type-level and from the instance-level. We pro-
pose rules for the structured development of ml-MSCs which do not
purely consist of concrete system instances but also of abstract rep-
resentations of common properties of comparable instance types.
Purpose-specific abstractions are used to deliberately interrelate
type-level and instance-level information within the same dia-
gram. ml-MSC hence provide an intermediate abstraction between
instance models and type models, which allows considering all
possible run time interaction scenarios in a manageable fashion
without losing information that hinders the detection of functional
defects. We show their application through a running example of
an adaptive cruise control system.

To investigate the benefit of this approach, we report on a controlled
experiment. Results show that compared to type-level scenarios and
instance-level scenarios the use of the proposed ml-MSC is advan-
tageous in terms of expressiveness, effectiveness, and efficiency.

1.4. Outline

In the following, Section 2 discusses related approaches and related
studies. We introduce the running example in Section 3. Section 4
introduces the foundations of ml-MSC, while Section 5 proposes
structured approaches for the purpose-specific definition of ml-
MSC and shows their application in the automotive domain. To aid
adoption through tool support, Section 5 also briefly discusses the
formal integration of ml-MSCs in relationship to ordinary MSCs
[25]. Sections 6 and 7 discuss the experimental design and results of
hypotheses tests, respectively, before Section 8 discusses the find-
ings. Finally, Section 9 concludes the paper.

2. RELATED WORK

This section gives a brief overview over further related approaches
from the state of the art. Particular emphasis is given to the distinc-
tion of type- and instance-level in multi-level modeling approaches
as well as the specification of collaborative CPS, not necessarily
limited to the automotive domain. In addition, we discuss similar
studies concerned with validation and verification of engineering
artifacts.

2.1. Multi-Level Modeling and Abstraction
on Type- and Instance-Level

The principle idea behind multi-level modeling is to be able
to retrieve type- and instance-level information individually and
independently from one another, such that the abstraction can
be dynamically chosen depending on the purpose of the model.
Using scenarios, this was achieved in [26] by applying polymor-
phic scenario-based specification models in order to implement
interfaces within instances. However, this requires sophisticated
and unambiguous instance-level and type-level representations (see
[27,28]). While this approach can be considered a multi-level mod-
eling paradigm, the ability to abstractly represent common proper-
ties of comparable instance types remains desirable [29–32].

In [33,34], a different definition for multi-level modeling is pro-
posed, such as the meta-language defines the context by means
of variability indicators from [34]. The benefit of this approach
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is that both ontological relationships (beyond the interface–
implementation relationship from [26]) as well as classification of
metaphysical structures [35,36] can be represented. This allows for
modeling relationships between, but also within the same level of
abstraction.

The levels of abstraction need not necessarily be always precisely
two [37–39]. Instead, as shown in [40], classic transformation lan-
guages can be used to interrelate models on several abstraction lev-
els to support multi-level modeling. A remaining challenge then
becomes to guarantee consistency between interrelated models,
which has been addressed, e.g., in [41]. Yet, while these approaches
are ontologically grounded, the manual effort involved in creating
multi-level models must not be ignored, but must be compatible
with contemporary requirements and modeling techniques [42].
Since this effort gives rise to issues beyond those of consistency (as
addressed in [41]), an approach to automatically analyze predefined
integrity constraints in multi-level models is presented in [43].

Despite all these advances and benefits of multi-level modeling,
one remaining central challenge is the increasing complexity within
the models. The work we present in the following can be used to
address this issue. In order to get an accurate overview of simi-
larities and differences, the contribution of Igamberdiev et al. [38]
provides a comparison focusing on language technology, domain
modeling, and tool support. Similarly, the work by Atkinson
et al. [29] also compares modeling approaches and their multi-
level modeling, while in [44] the authors consider the evaluation of
internal and external qualities. Lastly, Macías et al. [45] present an
approach which can be used to uncover conflicts due to collabora-
tive modeling environments, e.g., [46,47].

2.2. Multi-Level Modeling for
Collaborative CPS

To account for specific characteristics of collaborative CPS, specific
approaches have been proposed. A framework for defining incon-
sistency patterns and their respective management alternatives is
presented in [48]. The approach is concerned with optimizing the
modeling process with regard to various optimization criteria such
as consistency and costs.

Besides the consistency validation, it is essential to validate the
design during software and hardware configuration of CPS [5].
Since such configurations are not automatically feasible, Nie et al.
[49] provides guidelines to simplify the process.

Another approach involving self-adaptive workflows in CPS is
offered in [50]. Similarly, in order to gain an overview of the com-
plexity of CPS, multi-paradigms for modeling in [51] are proposed,
which intend to model each part of such complex systems explic-
itly. Not only their complexity poses a challenge for practitioners
and researchers, but also the system integration which needs to
be addressed to overcome these problems (see, e.g., [52–54]). In
Mosterman and Zander [55], potential handling mechanisms for
system integration in network infrastructures are identified and dis-
cussed for CPS is discussed, e.g., to improve security of interacting
collaborative CPS across multiple levels of abstraction. Similarly in
[56], regulations for collaboration are defined and protective mech-
anisms are determined that span multiple modeling levels.

2.3. Modeling During Validation
and Verification

Our work is intended to primarily foster the manual validation
of the functional adequacy of a system during early stages of
development. This work complements our previous work on using
diagrammatic representation to validate stakeholder intentions
[57–59], safety properties [24,60,61], and context assumptions [62].
Our work has consistently shown that dedicated review mod-
els, specific to the purpose of validation, are more effective in
uncovering defects in system requirements. For example, we com-
pared ITU MSCs with other modeling languages as review artifact
[57–59] showing that MSCs are a good review model. In addition,
we have shown that MSC-based review models support both less
experienced and more experienced reviewers [63] that instance-
level MSC are a significantly better review artifact for collaborative
CPS than type-level MSC [64]. However, as the problem of large sets
of slightly differing instance-level MSC to be investigated remains,
in this paper, we investigate whether the use of ml-MSC can pro-
vide a solution.

Outside of these efforts, only little work is available on manual
validation of system properties. Miller et al. [65] report on an
experiment with trained student participants, finding that
perspective-based reviews are more effective than checklist-based
approaches for error detection in natural language requirements
specifications. Basili et al. 1996 [66] report on a controlled experi-
ment with professional software developers. They conclude that the
perspective-based review is significantly more effective than other
inspection techniques for requirements documents. In replications
various replications and comparable experiments these findings
have been supported [67–73].

Most approaches concerned with quality assurance of engineering
artifacts focus on functional correctness and the formal verifica-
tion or automatic analysis thereof, as opposed to the validation of
functional adequacy (see [10,11] for a discussion of the difference).
A plethora of approaches deal exclusively with formally verifying
dynamic properties of systems. A comprehensive thereon with spe-
cific focus on autonomous robotic systems is provided in [74]. Of all
these approaches, particularly noteworthy are is the work by Brill,
Damm, Klose, Wittke et al. [75–77] and by Bontemps et al. [78]
on Live Sequence Charts. These are a extension to MSCs [25] to
allow for verification of, e.g., partial ordering of messages or live-
ness properties, and through extensions, verification of time behav-
ior [79,80].

A comparable extension to Petri Nets using Colored Petri Nets is
proposed in [81]. This approach specifically aims to improve mod-
eling of message transitions and token instantiations across differ-
ent levels of abstraction, thereby enabling correctness checks of the
system pertaining to different application domains. According to
Frank [32], this may overcome some of the limitations impairing
multi-level modeling at large, such as validation and verification
across levels of abstraction.

Finally, Timed Automata [82] have been applied to multi-level
modeling specifically to enable verification of safe states during
autonomous vehicle maneuvers [83,84]. While less abstract than
the work on Colored Petri Nets in that it applies to the automotive
domain specifically (as opposed to the meta-domain approach in
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[81]), the work by Hilscher, Schwammberger et al. [83,84] tackles
safety defects of autonomous systems to the state space of the oper-
ational situation, rather than the interaction of functionally collab-
orating systems. In this sense, we consider the work by Hilscher,
Schwammberger et al. [83,84] orthogonal, yet compatible to ours
as it focuses on the same type of problem, yet from a different per-
spective (i.e., correctness of safe states as opposed to adequacy of
functional collaboration).

3. RUNNING EXAMPLE

We illustrate the concept of ml-MSC throughout the remainder of
the paper using a cooperative adaptive cruise control (CACC, e.g.,
[3]) case example.

Collaborative CPS dynamically form networks of collaborating CPS
at run time in order to fulfill overall goals which cannot be fulfilled
by the individual CPS independently. Such collaborative networks
enable the individual systems to enhance their abilities using the
functionality provided by other systems. In the case of a CACC,
individual vehicles form a platoon at run time traveling with a com-
mon speed and decreased safety distances between one another.
This allows the platoon itself to contribute to the reduction of emis-
sions to the environment (due to reduced acceleration and deceler-
ation and slipstream driving). Additionally, the traffic throughput
on motorways is considerably increased [3,85]. Both goals cannot
be achieved by any individual CACC, but only in collaboration
among several CACCs.

Typical cruise control systems measure their “own” vehicle’s cur-
rent speed and control engine torque to maintain a constant speed
desired by the driver. Adaptive cruise control systems enhance this
functionality by also measuring the distance to vehicles driving
ahead and actively apply the brakes to maintain distances between
cars (avoid rear-end collisions). Cooperative adaptive cruise con-
trols further enhance this further by allowing individual vehicles
equipped with a CACC to form platoons by communicating with
nearby vehicles. This is shown in Figure 1, where the desired speed
(v) is transmitted and compared against the actual speed of the
vehicle (v’).

Figure 1 CACCs negotiate speed to form and coordinate
platoons. “?” and “!” represent requested and agreed information,
respectively.

Platoons form when at least two vehicles traveling into the same
direction with comparable speed v’ are within an appropriate range
to one another. Platoons dissolve when the last two vehicles of the
platoon depart. In between, other vehicles may join and leave the
platoon. During operation the platoon negotiates a common speed
between all partaking vehicles (v” in Figure 1). In a more advanced
scenario, platoons conduct coordinated overtaking maneuvers and
coordinated emergency brake maneuvers (if the lead vehicle detects
an obstacle), and account for allowing other vehicles to cross the
platoon (e.g., to allow that vehicle to move toward the highway exit
ramp). For example, in Figure 1, the lower left vehicle requests (rep-
resented by “?”) the upper left vehicle to overtake the vehicle in
front of both vehicles (v”’). The upper left car responds by assuming
a velocity of 85 (“!” in Figure 1) temporarily before coasting back
down to the common speed v”.

Because vehicles can join or leave the platoon, the platoon can
consist of different numbers of vehicles (i.e., instances) at different
points in time. For example, in order for one vehicle to overtake
another, the platoon must be able to “make room” such that one
vehicle can safely pass between gaps. Therefore, the platoon must
also consider each vehicle’s specific properties (e.g., physical dimen-
sions, relative location within the lane) and functional abilities (e.g.,
maximum brake force, maximum acceleration, ability to partake in
such a maneuver, etc.). The specific composition of the platoon at
run time, hence, leads to a different behavior in building the gap.

4. FUNDAMENTALS OFMULTI-LEVELMSCs

Model-based engineering is often centered around the use of graph-
ical models [86]. Graphical models aid in the development of an
architecture [87–89] as well as in interpreting, discussing, and nego-
tiating design decisions [90]. Beside graphical diagrams, model-
based approaches typically define more or less formal semantics of
the models [91]. For the definition of purpose-specific views and
abstractions that are integrated into one model, two international
standards are often seen as the basis:

∙ ISO/IEC/IEEE 42010 [92] defines views and viewpoints for
architecture descriptions to address stakeholder concerns.

∙ ISO/IEC 19508 [93] defines the Meta Object Facility (MOF) by
the Object Management Group (OMG). The MOF provides a
fundamental framework to define modeling languages that can
be easily integrated with one another.

The MOF proposes the use of four meta layers [93]: a layer defin-
ing the commonalities between all modeling languages (meta-
meta-layer), a layer defining the modeling language (meta-layer), a
layer defining the model (model layer), and the layer defining the
concrete real-world instances of the model (instance layer). Hence,
in model-driven development, two model types are commonly
differentiated:

∙ Type-level models specify the software or system to be
developed on an abstract level. Hence, type-level models are
useful to manage the combinatorial complexity resulting from
the many possible combinations of the network of collaborating
automotive CPS that must be accounted for [94]. However, the
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risk remains that a certain defect is not detected during manual
reviews due to the high-level of abstraction.

∙ Instance-level models highlight concrete scenarios [94], a
concrete system of a specific type might face during run time
execution. Therefore, they are a good means for stakeholder
discussions and to detect errors and defects [95]. They are thus
useful to inspect concrete functional inadequacies that are
related to a certain composition of the network of CPS.

In the next subsections, we introduce ITU MSCs and show how the
differentiation between type-level models and instance-level mod-
els manifests for these.

4.1. ITU Message Sequence Charts

ITU MSCs [25] are a formal diagram type that can be used to docu-
ment interactions between the system and external actors as well as
between system components. They are considered useful for speci-
fying the interaction-based behavior of embedded systems [96] and
are commonly proposed to specify scenarios [94].

There are two kinds of MSCs, high-level Message Sequence Charts
(hMSCs) and basic Message Sequence Charts (bMSCs). hMSCs are
directed graphs whose nodes reference other MSCs (either a bMSC
or another hMSC). They can be used to structure the behavioral
specification of the system. bMSCs specify the interaction between
instances by means of messages. Specifically, bMSCs document the
interaction between instances, the system, its components, or com-
ponents of external actors. These are depicted as lifelines, which
interact by exchanging messages. In the following, we hence focus
on bMSCs exclusively.2

According to well-established formalizations (e.g. [97]), we define
a single bMSC b as 5-tupel b = (Ib,Mb,Eb,≤b, 𝛼b), where Ib is a set
of lifelines, Mb a set of messages exchanged between the lifelines,
and Eb a set of events (i.e., discrete points in time where one lifeline
receives or sends one message). These elements are ordered using
two relations:≤b⊆ Eb×Eb defines the chronological order of occur-
rence of the events, 𝛼b ⊆ Eb×Mb×Ib defines the relation between an
event, a message and a lifeline. Figure 2 shows an exemplary bMSC
and provides an overview of the basic graphical syntax of bMSCs.

2It is to note that the ITU standard [25] uses the term “instance” instead
of “lifeline.” However, we use the UML-common term “lifeline” to refer
to bMSC instances to avoid confusion with system instances.

The eight bMSC lifelines defined in Figure 2 represent the platoon’s
eight cars. Sending and receiving of messages are considered events;
in this example, the sending and receiving of messages with the cars’
current speeds (v) and desired speeds (v’). Messages are causally
ordered along the instances’ lifelines, which means that, while mes-
sages are sent in the order that is depicted, they do not necessar-
ily have to be received in the depicted order. Messages are sent in
the depicted order after all previous incoming messages have been
received. In this case, the lane switching maneuver is enacted. The
lifeline for car “c3” requests “c5” to move closer to “c6” and “c7,”
ignoring safety distances. bMSC lifeline “c5” complies and informs
“c4” that the maneuver is complete. bMSC lifeline “c4” then moves
into the gap in the other lane.

4.2. bMSC Type-Level Modeling

For several reasons, model-based specifications are typically
defined on a type-level. One key reason is that the abstraction pro-
vided by type-level models helps to cope with the complexity of
specifications and to reduce their size [98–100]. In addition, type-
level modeling is resembling the software implementation more
closely, as software is also written on the type-level, despite being
deployed to the instance-level. In the case of the CACC, a bMSC in
a type-level model specifies system types, subsystem types, or com-
ponent types as lifelines. These are the types typically specified in
the system architecture (see Figure 3 for a simplified example). Typ-
ical lifelines would be:

∙ the CACC itself,

∙ CACC components (e.g., the distance sensor to detect other
vehicles),

∙ human users interacting with the system (e.g., the driver, who
steers the vehicle or sets the desired speed in the CACC),

∙ neighboring systems within the same car that the CACC
interacts with (e.g., the engine controller or the brake controller
to manipulate the vehicle’s speed), and

∙ one single lifeline representing other CACC systems the CACC
shall collaborate with during operation.

Figure 4 gives an example for such a type-level bMSC. As can
be seen, the bMSC contains six lifelines on the type-level. Since

Figure 2 A bMSC showing a lane switch maneuver. In this and the following figures, dark gray
lifelines represent instance-level lifelines. Please note that color shading is not part of the ITU
MSC standard [25] and was added by the authors to increase clarity.
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Figure 3 Type-level architecture of the CACC. Type-level classes are depicted in light gray. Their
instantiations are depicted in dark gray.

Figure 4 Type-level bMSC for platoon speed negotiation. In this and the following figures, light grey
lifelines represent type-level lifelines. Again, color shading was added by the authors to increase clarity.

these document types of systems rather than concrete instances, the
exchanged messages are on the type-level as well. In this case, an
excerpt of a simplified algorithm is shown, which documents how a
CACC negotiates a platoon speed with the lead car and the trailing
car. Based on the observed distance and desired driver speed, the
CACC calculates an optimal platoon speed and submits this value to
the leading car and following car. These cars contain CACCs them-
selves and hence submit a similar suggestion to the CACC of their
own vehicle.

4.3. bMSC Instance-Level Modeling

On the instance-level, scenarios typically describe concrete situa-
tions [94], e.g.:

Trevor drives a black Vapid Motorcompany Fortune GT with a built-
in CACC produced by ACME Inc. On the motorway Trevor’s Vapid
meets a Vulcar Nebular Turbo with a built-in CACC by AutoCorp.
Both CACCs identify that they are driving in the same direction and
hence establish a platoon.

Modeling approaches exist that transfer this concept of instance-
level descriptions to a graphical model (e.g., [27,101,102]).
Instance-level bMSCs describe a maneuver of the platoon on a
concrete level for a concrete number of cars, drivers, and CACCs
involved, as is shown in Figure 5.

In Figure 5, seven bMSC instance-level lifelines are shown. Note
that in this case we do not necessarily refer to concrete instances
but also groups of instances, i.e., some bMSC lifelines are rather on
a instantiated type-level. While “Frank” is clearly an instance-level
description, an “ACME CACC” is not on the abstract type-level of
a generic CACC but has been instantiated to account for a specific
vendor. However, it does not refer to just one concrete CACC build
in a particular car. In Figure 5, the messages are also on the instance-
level. In this case all messages clearly belong to the instance-level.
The CACC by ACME Inc reads a concrete distance of 25m to the
Vulcar equipped with the AutoCorp CACC. It also reads the Vapid’s
current speed of 14mph. Meanwhile, the AutoCorp CACC reads
the distance to its neighboring vehicle (not depicted in Figure 5,
however indicated by the ellipsis symbol “…” on the right) and its
own vehicle’s speed. The ACME CACC and AutoCorp CACC both
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Figure 5 Instance-level bMSC for speed negotiation between CACCs. Like before,
dark gray shading is used to signify instance-level lifelines.

initiate speed negotiations based on their respective calculated clos-
ing rate, but since the AutoCorp CACC measures a faster increase
to its leading vehicle, the suggested speed of 17mph is increased to
19mph.

4.4. Type- Versus Instance-Level Validation

Type-level models allow investigating all situations abstractly and
therefore aid validation. However, not all defects can be detected
on the type-level, as they are abstracted away. Hence, instance-level
models are needed. Another shortcoming of type-level specifica-
tion lies in the support for elicitation of requirements, which is a
strong argument for using scenarios in the first place [94]. Scenar-
ios describe concrete detailed situations that are often specified on
an instance-level, as it is hard to directly abstract from a real-world
situation to a type-level specification without the intermediate step
of writing down the original scenario on the instance-level [103].
Therefore, validates may find it easier to understand instance-level
models during inspections or reviews.

Defects can result from the interplay of several instances of the same
system type. In addition, defects can result from the interplay of
multiple instances of the same system type with instances of other
system types. These defects often remain covert as the type-level
specification does not explicitly state that there might be one or
more other systems of the same type participating. Hence, man-
ual validation must consider these situations on the instance-level.
However, it is neither feasible to validate all possible instance-level
configurations of collaborating CPS nor possible to investigate all
potential situations manually. If one configuration of the collab-
orative CPS network were left out, this could also lead to defects
remaining covert.

To summarize, both—pure type-level and instance-level
modeling—have their advantages and can be used in combination.
This allows for a complete specification and a closer investigation
of certain aspects. However, there is still a need to support valida-
tion of model-based specifications with an abstraction that allows
investigating a complete specification (i.e., as is done in type-level
specifications) and considering the interplay of multiple instances
of the same type (i.e., as is done with instance-level diagrams).
Therefore, Section 5 proposes the purpose-specific definition of
ml-MSCs.

With ml-MSCs it shall be possible to identify functional inadequa-
cies that otherwise remain covert. For instance, a validator might be
interested in the effects an intruder vehicle has on the formed pla-
toon. Therefore, it is of interest to investigate all possible platoon
configurations to ensure proper platoon behavior in every relevant
situation. However, that yields in an inconsiderable number of dia-
grams to be investigated and will typically also not be necessary
as the validator is interested in the direct effects of the intrusion.
Hence, it is sufficient to investigate the interplay between platoon
leader, the intruder, the vehicle following the intruder and other
vehicles in the platoon. While it is necessary to investigate the first
three roles in concrete, the latter is used to represent all other vehi-
cles of the platoon and is therefore on an abstract level.

5. MULTI-LEVEL MSC MODELING

To overcome the limitations of only using type-level or instance-
level during manual validation of system behavior, we propose
the systematic specification of multi-level MSCs (ml-MSC). Using
a combination of type-level and instance-level information, ml-
MSCs can be subjected to inspections or reviews as they show the
holistic system specification without overloading the validator with
instance-level information. The combination of types and instances
within one single model is beneficial as it allows to investigate mul-
tiple scenarios and configurations at once. At the same time it allows
placing emphasis on important individual aspects of operational
situations.

After giving an overview on ml-MSC in Section 5.1, Sections 5.2
and 5.3 will define two distinct processes for creation of ml-MSCs
depending on the individual purpose. Either instance-level models
can be partly abstracted such that types are introduced within the
original instance-level model (see Section 5.2) or type-level models
are partially concretized by introducing instance-level elements (see
Section 5.3). Section 5.4 summarizes how mixed abstraction MSCs
aid validation.

5.1. Overview

To allow systematic generation of ml-MSC two different specifi-
cation processes are reasonable, as we exclude any unsystematic



34 M. Daun et al. / Journal of Automotive Software Engineering 2(1) 27–45

ad hoc creation which bears the risk of missing important purpose-
specific aspects. The two processes are as follows:

∙ Selective Abstraction. The modeler envisions a concrete scenario
that serves the purpose intended to be investigated. System
instances and message instances are subsequently investigated
to check whether they are needed to represent the concrete
defect (or other purpose of investigation) or not. In the latter
case, messages and instances are abstracted to a type-level,
which allows (a) the focusing on the relevant parts and (b)
limits the number of concrete situations that must be
investigated. This process is described in Section 5.2.

∙ Selective Instantiation. The modeler starts with a type-level
MSC, which can, e.g., be taken from the system specification.
Depending on the purpose to be investigated instantiation is
used to concretize certain system lifelines and messages as far
as needed. This process is described in Section 5.3.

For both approaches it is important to differentiate between the set
of type-level elements, i.e., system lifelines and generic messages
(for bMSCs, these are typically specified as b = (Ib,Mb,Eb,≤b, 𝛼b))
and the set of all possible instantiations thereof. This means that Ib
defines a certain set of lifelines that can occur at run time and Mb
a certain set of messages that can occur during run time, such that
Ib = (i1,… , in) → 𝜑(i1) = (i11

,… , i1n ),… , 𝜑(in) = (in1
,… , inn )

and Mb = (m1,… ,mn) → 𝜑(m1) = (m11
,… ,m1n ),… , 𝜑(mn) =

(mn1
,… ,mnn ). Additionally, Eb,≤b, 𝛼b also define certain instance-

level elements. This way two sets of elements are defined: a set on
the type-level and a set on the instance-level.

In our CACC running example, each i ∈ Ib must be considered a
lifeline defined on the type-level. The lifeline “driver” hence repre-
sents different persons (e.g., Maria, Frank, Walter, Jane, etc.). These
persons are instances of the type “driver” and a common behavior
is assumed, as defined by the bMSC. The lifeline “Other CACC”
refers to a set of possible real-world instances of a CACC which
can act as the lifeline other CACC. However, in this case it cannot
be ensured that there will exist only one other CACC our system
is interacting with. Hence, the possibility of multiple instances that
simultaneously replace other CACCs must be considered. Further-
more, type-level messages are defined. For example, it is defined
that the CACC and the brake controller exchange the message “v”
(for velocity) such that v defines a set of possible concrete mes-
sages that can be exchanged (e.g., messages consisting of a speed
value measured in mph between “6” and “60”). In addition, rela-
tions between messages and lifelines are also defined on the type-
level. For example, after the driver (which means any instance of
the type “driver”) brakes, the brake controller sends a message “stop
maintaining speed” to the CACC in order to end operation. This
is a message on type- and instance-level as no other instantiations
thereof are expected to exist. In some cases, relations between ele-
ments on the type-level depend on instance-level values. For exam-
ple, v is exchanged and afterwards, it is decided whether another
message is sent, depending on v. This might be relative, i.e. “if v <
v’ send ACCEL else send DECEL” or absolute, i.e. “if v< 20km/h
then TERMINATE.”

5.2. Selective Abstraction from Instances

To create ml-MSCs as described in the previous section using
the process of selective abstraction, instance-level models are used
as starting point. Subsequently, single instance-level elements are
replaced by their respective type. Note, that we do not refer
to enriching instance-level models by annotating the type of an
instance using the UML “is kind of ” relationship, but to purpose-
fully using modeling elements on a type-level and on an instance-
level within the same diagrammatic representation. We do so by
grouping together selected instances and thus abstracting to the
level of system types in order to highlight more generic properties.
In many cases, this may include the introduction of roles: Concrete
instances are described in terms of the respective role they fulfill,
which then corresponds to a type-level description (see [104] for a
detailed discussion of the difference between instances, types, and
roles, which concludes that roles can be comparably useful on the
type-level as well as on the instance-level). Although systems ful-
filling a specific role typically instantiate a certain system type, they
do not specify the system’s instances but abstract groups of system
instances that shall behave in a certain situation in the specified way.
We can hence replace a concrete instance-level lifeline ikx , where
ikx ∈ (𝜑(ik) = (ik1

,… , ikn )), with its corresponding type-level life-
line ik. The consequence of introducing types on the instance-level
is a bMSC, which contains fewer messages and lifelines than the
concrete instance-level model. This may help reducing the intra-
diagram complexity, while maintaining the same level of detail for
the purpose of validation, as the model is easier to comprehend, and
potential hazards become more obvious.

Figure 6 shows these benefits using the CACC example. For the
CACC example, roles might be “leading vehicle” and “follow-
ing vehicle.” Hence, a type-level specification might distinguish
between systems of the different roles. For an instance-level bMSC
such as shown in Figure 5, lifelines representing systems fulfill-
ing a specific role are replaced by the role name. The bMSC then
describes interactions between systems of the same system type (i.e.,
the CACC under development) from the perspective of the respec-
tive role that is relevant for the concrete instance-level scenario. As
can be seen from Figure 6, this leads to the identification of more
and less relevant parts for a validation. For instance, it becomes
obvious that potential defect occur in the interplay of just four
CACCs, the leading vehicle, the following vehicle, and two vehi-
cles driving in parallel and therefore blocking the left lane. Other
involved ACCs just exhibit routine behavior. Hence, the bMSC
from Figure 6 can consequently be reduced to the bMSC shown
in Figure 7, only showing the relevant excerpt from Figure 6. In
Figure 7, irrelevant lifelines from Figure 6 are crossed out from
the miniature representation thereof to highlight this. Merged and
reused lifelines as well as messages are indicated with the dotted
transition arrows.

Benefits of this diagrammatic representation lie in the potential to
explicitly specify the desired and the undesired behavior of sys-
tems involved in a collaboration. This cannot be achieved on the
type-level as the collaboration of multiple systems of the same type
must be considered. Moreover, this cannot be achieved on the
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Figure 6 Multi-level MSC depicting the “Make Room” maneuver. Like before, types abstracted
from instances are depicted as light gray, instances as dark gray. Additionally, black lifelines with
white labels represent abstracted roles. Again, color shading added for increase clarity.

Figure 7 The roll-reduced multi-level MSC from Figure 6 showing
two types (light gray), one instance (dark gray), and one role-reduced
type (black). The dotted arrows and dashed crosses show the selective
abstraction from irrelevant information depicted by the miniature of
Figure 6.

instance-level alone, as the defined behavior shall be subject to all
relevant situations and not only to the single one depicted on the
instance-level. The defined nominal behavior can then be validated
at design time or run time (e.g., [105]).

5.3. Selective Instantiation of Types

ml-MSCs can also be derived by selective instantiation of types.
In this case, type-level models are the starting points. This way,
concrete instances are derived from system types and introduced,
where beneficial, to increase the level of detail on run time specific

interactions on the instance-level. For example, this may include
known and common off-nominal behavior of human agents or sys-
tems [105,106].

Like in Section 5.2, the resulting model incorporates elements on
the type-level, elements on the instance-level, and potentially the
definition or roles. However, in contrast to Section 5.2, the focus is
on expanding the level of detail to allow for a more thorough inves-
tigation of interactions in which several concrete instances of the
same type are involved.

ml-MSCs created in this fashion, hence, mostly contain bMSC life-
lines that specify system types. In addition, bMSC lifelines that
show system instances are used to emphasis specific aspects in
detail. Furthermore, while many messages will be defined on a
type-level for reducing complexity and allowing for general state-
ments, some messages will define concrete instances of this mes-
sage. Hence, in this case we start with a bMSC on the type-level
and replace some type-level elements such as the lifeline ik with
“interesting” representatives on the instance-level, i.e., with lifelines
of the set 𝜑(ik) = (ik1

,… , ikn ). “Interesting” here refers to opera-
tional situations that are deemed important by validator and shall be
investigated closer. Replacing type-level elements by instance-level
elements can thus lead to multiple ml-MSCs to be investigated. For
instance, if the validator would like to assess two operational situ-
ations for potential defects, two ml-MSCs are created, one for each
situation. For another example, the validator may assume that very
high or very low values might lead to a critical situation. There-
fore, both situations shall be investigated with ml-MSCs. In conse-
quence, the number of ml-MSCs can be higher than the number
of corresponding type-level MSCs. However, as still many elements
are kept on type-level and only the potentially hazardous influences
are instantiated, the number of ml-MSCs to be investigated is still by
a large extent smaller then when investigating all possible instance-
level combinations.

An example is shown in Figure 8, in which a simplified excerpt of
the control algorithm governing the calculation of the vehicle’s own
speed is shown. While in a type-level model would typically show
a single bMSC lifeline “Wheel Sensor” to depict the messages the
CACC receives from this kind of sensor, in Figure 8 this lifeline has
been instantiated four times to account for all four sensors attached
to each wheel of a vehicle. This allows describing a situation that
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Figure 8 Multi-level MSC showing robust vehicle speed determination. Type-level lifelines are
light gray, instance-level are dark gray. Role-type lifelines may be understood as existing on type-
and instance-level concurrently, depicted in black.

different sensors produce different signals, which, e.g., shows the
need to balance differing values (e.g., through a failure-robust
voting algorithm like [107]). Since in type-level models, these four
instance-level lifelines would be represented as a single type-level
lifeline, the need for value balancing remains covert.

Furthermore, Figure 8 shows type-level and instance-level messages
mixed in one diagram. For example, it is specified that the distance
sensor sends a message of the type “distance to leader,” i.e., no con-
crete values that are transmitted are prescribed. In contrast, the four
wheel sensors transmit concrete values. This supports in the detec-
tion of defects resulting from, e.g., sensor failure or runaway values
measured by an intact sensor, and helps in common cause analysis
and hazard mitigation.

5.4. Summary

ml-MSCs allow the dedicated investigation of system failures
that threaten the collaborative operation during run time. ml-
MSC, thereby, guide the stakeholders during type-level scenario
validation by making use of instance-level information. These
instance-level information are used to make the context of some
collaborative functionality within the same system (i.e., one CACC)
as well as collaborative systems (between several CACCs) explicit. It
furthermore opens the possibility to document the effective micro-
structure of a collaborative CPS network architecture, i.e., how
the collaborative functionality is achieved through the interplay of
instances between individual cyber-physical vehicles.

6. EXPERIMENT DESIGN

Throughout this paper, we have argued that the purpose-specific
interrelation of instance-level and type-level information into one
scenario diagram as suggested in our ml-MSC approach is bene-
ficial to identify functional inadequacies that arise from the inter-
play of types and instances in automotive CPS. After applications
to industrial case examples and discussions with industry partners
to ensure the applicability of the proposed solution approach, we
designed a controlled experiment to determine whether the use of
ml-MSCs showing different collaborative system compositions is
beneficial for the manual validation of diagrams depicting system
collaboration.

6.1. Experiment Tasks

Participants were asked to conduct a review of three bMSCs (one
each of the aforementioned types) in random order. The partici-
pants reviewed excerpt diagrams representing a part of the specifi-
cation of the collision avoidance system in different diagrammatic
representations. In each reviewing task, twelve natural language
stakeholder intentions were given. For each intention the partici-
pant had to decide whether the intention was correctly or incor-
rectly displayed in the respective bMSC or if it is impossible to
tell from the diagram. In addition, the participants were asked to
rate their confidence in decision-making on a 5-point Likert scale.
After review, each participant completed a questionnaire asking for
demographic information and for their attitude toward the per-
ceived support for the review task rendered by the different repre-
sentations.

6.2. Variables

From the experimental task, it follows that the independent variable
(IV) is which diagrammatic representation was used to validate the
specified behavior against the stakeholder intentions. This IV has
three levels:

∙ Type-Level MSC (TL): The participants make their decisions
based on a type-level MSC as the diagrammatic representation.

∙ Instance-Level MSC (IL): The participants make their decisions
based on an instance-level MSC as the diagrammatic
representation.

∙ ml-MSC (ML): The participants make their decisions based on
a ml-MSC as the diagrammatic representation.

To assess the performance of each level of IV, we measured the fol-
lowing dependent variables (DVs):

∙ Expressiveness: Ratio of stakeholder intentions the participants
indicated as suitably depicted in the review artifact and the
stakeholder intentions the participants indicated were not
suitably depicted the diagrammatic representations.
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∙ Effectiveness: Ratio of correct and incorrect decisions regarding
the question whether a stakeholder intention is accurately
depicted in the diagrammatic representation.

∙ Efficiency: Average time needed (in seconds) to make a correct
decisions regarding the question whether a stakeholder
intention is accurately depicted in the diagrammatic
representation.

∙ User confidence: Average confidence a participant claims for
the correctness a decision made.

∙ Subjective supportiveness: Average result of self-rated
standardized questionnaire items from the TAM3 (Technology
Acceptance Model v.3, see [108]) for perceived usefulness,
perceived ease of use, and computer self-efficacy.

To investigate effects resulting from participants’ experience and
knowledge, we also measured several covariates, i.e., educational
achievements, work experience, and participants’ self-rated experi-
ence in four categories related to conducting reviews in general and
the used modeling notation in particular.

6.3. Hypotheses

For each dependent variable, we derived a null and alternative
hypotheses, which are given by Table 1. In case the alternative
hypothesis is accepted, we investigate the differences between fac-
tors by planned comparison [109]. For this, Table 1 shows subhy-
potheses for each factor. In the following, we will report the results
from the conducted one-way repeated measures ANOVAs and
highlight more fine-grained findings regarding the factor-specific
alternative hypotheses.

6.4. Participants

The experiment was conducted using domain experts for model-
based engineering of embedded systems with varying years of
experience. The use of a mixed participant group was chosen to
simulate different levels of expertise, as it has been shown that dif-
ferent experiences lead to different results in comparable controlled
experiments (cf. [110]). In total, 20 participants took part in the
experiment.

6.5. Experiment Material

We used an industrial sample specification from the avionics3 sev-
eral features. Domain featuring a collaborative component. Specifi-
cally, we chose a collision avoidance system (i.e., a system like [111],
which identifies aircraft on a collision course and manipulates flight
routes of the aircraft to increase separation altitude). For the pur-
pose of this experiment, bMSCs on the type-level, instance-level,

3A case example from the avionics domain was available due to the
nature of the research project in which this work was created. We chose
an avionics case example in order to minimize participant bias from
automotive systems they may be familiar with, e.g., from their own
vehicles. The specification was validated in close collaboration with
partners from the automotive and avionics industry to ensure gener-
alizability of results.

and ml-MSCs were created based on our partners’ case example
descriptions. Technical jargon as well as intellectual property iden-
tifying our industry partners were removed.

6.6. Procedure

The study was conducted as a 30-minute within-subjects online
experiment to reduce the negative impact on the participants’ per-
ception of anonymity in the experiment. After informed consent
was collected and the nature of the study was explained, a trial
order (of the three types of bMSCs) was generated for each partici-
pant, and the participants were asked to familiarize themselves with
the principle functioning of a collision avoidance system as well as
the safety-relevant stakeholder intentions pertaining thereto. When
participants were ready, they started the review of the bMSC and
made their judgments of whether or not some stakeholder intention
was correctly or incorrectly depicted in the diagram, or whether the
diagram does not allow such a judgment. This means each partici-
pant reviewed 36 stakeholder intentions, twelve in TL, twelve in IL,
and twelve in ML. For each stakeholder intention, participants were
asked to rate their confidence. Once all 36 judgments were com-
plete, participants indicated their preference for each of the three
bMSC versions on TAM3 items.

7. EXPERIMENT RESULTS

After data collection concluded, the data were downloaded from
the experimental platform. Incomplete and irregular data sets (i.e.,
a participant that did not finish the experiment or answered in
patterns) were discarded. A total of 18 data sets remained. After
confirmation of normal distribution, one-way repeated measures
ANOVAs were conducted to test if the data shows significant differ-
ences between the means of expressiveness (H1), effectiveness (H2),
efficiency (H3), confidence (H4), and supportiveness (H5) with
regard to the diagram type. In the following, we will discuss answer
frequencies and hypothesis test results for each dependent variable
and decide whether to reject the corresponding null hypotheses and
accept the alternative one.

7.1. Descriptive Statistics

In the following, we report on answer frequencies in order to gain
an understanding which representation (TL, IL, or ML) was rated as
better, depending on DV. Descriptives are summarized in Table 2.
In the following, we discuss the means (𝜇), standard deviations
(𝜎), and standard error (𝜎x) for each DV. Not that one partici-
pant neglected to respond to questions pertaining to user confi-
dence, which is why descriptive statistic consider one less sample in
Table 2.

Expressiveness. Regarding expressiveness, we asked for each stake-
holder intention, whether the participant thinks that this question
can be answered using the diagrammatic representation shown. TL
was seen as the least expressive with an average of 68.52% of stake-
holder intentions found to be answerable. IL was seen as 81.48%
and ML as 84.72% expressive.
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Table 1 Tested null and alternative hypotheses.

Var ID Hypothesis
H1-0 There is no difference in expressiveness between TL, IL, and ML.
H1-a There is a significant difference in expressiveness between TL, IL, and ML.

H1: Expressiveness H1-a1 There is a significant difference in expressiveness between TL and IL.
H1-a2 There is a significant difference in expressiveness between TL and ML.
H1-a3 There is a significant difference in expressiveness between IL and ML.
H2-0 There is no difference in effectiveness between TL, IL, and ML.
H2-a There is a significant difference in effectiveness between TL, IL, and ML.

H2: Effectiveness H2-a1 There is a significant difference in effectiveness between TL and IL.
H2-a2 There is a significant difference in effectiveness between TL and ML.
H2-a3 There is a significant difference in effectiveness between IL and ML.
H3-0 There is no difference in efficiency between TL, IL, and ML.
H3-a There is a significant difference in efficiency between TL, IL, and ML.

H3: Efficiency H3-a1 There is a IL difference in efficiency between TL and IL.
H3-a2 There is a significant difference in efficiency between TL and ML.
H3-a3 There is a significant difference in efficiency between IL and ML.
H4-0 There is no difference in user confidence between TL, IL, and ML.
H4-a There is a significant difference in user confidence between TL, IL, and ML.

H4: User Confidence H4-a1 There is a significant difference in user confidence between TL and IL.
H4-a2 There is a significant difference in user confidence between TL and ML.
H4-a3 There is a significant difference in user confidence between IL and ML.
H5-0 There is no difference in subjective supportiveness between TL, IL, and ML.

H5: Subjective H5-a There is a significant difference in subjective supportiveness between TL, IL, and ML.
Supportiveness H5-a1 There is a significant difference in subjective supportiveness between TL and IL.

H5-a2 There is a significant difference in subjective supportiveness between TL and ML.
H5-a3 There is a significant difference in subjective supportiveness between IL and ML.

Effectiveness.For effectiveness, the ratio of correct answers was mea-
sured. ML resulted in most correct answers (x = 64.35%), followed
by IL with x = 58.33%. Least effective was TL with x = 50.46%.

Efficiency. Regarding efficiency, we determined the average time
used for making one correct decision. Most efficient was ML
with only 24.51 seconds needed for making a correct decision.
TL ranked second with x = 31.21sec, and IL ranked last with
x = 36.94sec.

User confidence. The participants were most confident in decision
making using TL with x = 4.19 (where 5 means “’very confident”’
and 1 means “’least confident”’), followed by ML with x = 4.06 and
IL with x = 3.99.

Subjective supportiveness. On average participants found ML most
supportive with x = 3.45 (where 5 means “very supportive” and 1
means “not suppportive at all”). TL (x = 3.27) and IL (x = 3.13)
were seen less supportive. As subjective supportiveness is calculated
from the average of multiple items, reliability of the measurement
must be ensured, although we used the TAM3. Therefore, we cal-
culated Cronbach’s alpha showing optimal reliability of the mea-
surements. For ML 𝛼(10) = .962, for TL 𝛼(10) = .951, for IL
𝛼(10) = .938.

7.2. Hypotheses Tests

In Section 7.1, we have shown how the different representation
types perform with regard to the respective DV. However, in order
to determine which of these differences is significant, we computed
a one-way repeated measures ANOVA to test our hypothesis and
followed up significant results with post hoc tests. Table 3 provides
an overview of the results from the one-way repeated measures
ANOVA.

Expressiveness. A one-way repeated measures ANOVA showed a
significant difference in the expressiveness of TL, IL, and ML.
F(2, 38) = 14.83, p < .001. We therefore reject H1-0 and accept
H1-a.

Post hoc tests using the Bonferroni correction revealed that expres-
siveness of ML (M = 85.83%) is significantly higher than
the expressiveness of TL (M = 67.5%), p < .001. Furthermore, the
expressiveness of IL (M = 80.83%)is significantly higher than the
expressiveness of TL p = .003. We can therefore accept H1-a2 and
H1-a3

Effectiveness. The results from a one-way repeated measures
ANOVA showed a significant difference in the effectiveness of
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Table 2 Descriptive statistics.

N Mean Std. Deviation Minimum Maximum
TL 18 68.52% 12.96% 50.00% 100.00%

Expressiveness IL 18 81.48% 13.27% 50.00% 100.00%
ML 18 84.72% 12.54% 58.33% 100.00%
TL 18 50.46% 8.80% 33.33% 58.33%

Effectiveness IL 18 58.33% 15.12% 25.00% 83.33%
ML 18 64.35% 17.57% 33.33% 91.67%
TL 18 31.21 16.81 11.57 72.29

Efficiency IL 18 36.94 23.82 12.14 93.57
ML 18 24.51 17.16 7.00 63.25
TL 18 4.19 0.83 2.00 5.00

User confidence IL 17 3.99 0.90 1.00 5.00
ML 18 4.06 0.99 1.00 5.00
TL 18 3.27 0.84 1.10 4.30

Subjective supportiveness IL 18 3.13 0.71 1.90 4.40
ML 18 3.45 0.89 1.20 5.00

Table 3 Results from one-way repeated measures ANOVA.

Sum of Squares df Mean Square F Sig.
Expressiveness 3592.593 2 1796.296 14.833 0.000
Effectiveness 2918.981 2 1459.491 9.011 0.001
Efficiency 1681.486 2 840.743 1.551 0.225
Confidence 0.336 2 0.168 0.800 0.457
Subjective supportiveness 2.344 2 1.172 2.039 0.144

TL, IL, and ML F(2, 38) = 9.01, p < .001. We therefore reject H2-0
and accept H2-a.

Post hoc tests indicated that the effectiveness of ML (M = 67.09%)
is significantly higher than the effectiveness of TL (M = 50.00%),
p = .002. Furthermore, the effectiveness of IL(M = 58.75%) is
significantly higher than the effectiveness of TL p = .033. We can
therefore accept H2-a1 and H2-a2.

Efficiency. There were no significant differences in the efficiency for
TL, IL, andMLF(2, 38) = 1.55, p = .23. Therefore, we cannot reject
H3-0.

User confidence. The test showed no significant difference in the
user confidence for TL, IL, and ML F(2, 36) = 0.80, p = .46. We
therefore cannot reject H4-0.

Subjective supportiveness. The results of a one-way repeated mea-
sures ANOVA show that participants did not rate the diagram-
matic representations’ subjective supportiveness significantly dif-
ferent F(2, 38) = 2.04, p > .14. We therefore cannot reject H5-0.

8. DISCUSSION

In the following, we discuss what the experimental results from
Section 7 mean with regard to information being presented in type-
level, instance-level, or multi-level MSCs for the validation of col-
laborative CPS.

8.1. Major Findings

Table 4 provides an overview of the accepted hypotheses and the
findings where we were unable to establish a significant difference
between representation types. In the following, we will discuss find-
ings regarding TIL, findings regarding the difference between Type
and Instance, and interpretations based on both findings.

Benefits of using ml-MSCs. To sum up results regarding ML, we can
state that:

∙ ML is highly significantly more expressive than TL.

∙ ML is highly significantly more effective than TL.

∙ ML is also slightly more expressive than IL (although the
experiment could not detect a statistically significant
difference).

∙ ML is also more effective than IL (although the experiment
could not detect a statistically significant difference).

∙ ML is most efficient and seen as most supportive (although the
experiment could not detect a statistically significant
difference).

These findings show, that multi-level MSCs are advantageous com-
pared to bMSCs only containing type-level or instance-level infor-
mation. ml-MSCs are more expressive and effective when used for
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Table 4 Results of hypotheses tests.

Hypothesis Description Result
H1-0 There is no difference in expressiveness between TL, IL, and ML.
H1-a There is a significant difference in expressiveness between TL, IL, and ML. Accepted
H1-a2 ML is highly significantly more expressive than TL

H1 (expressiveness)

H1-a3 IL is highly significantly more expressive than TL
H2-0 There is no difference in effectiveness between TL, IL, and ML.
H2-a There is a significant difference in effectiveness between TL, IL, and ML. Accepted
H2-a1 IL is significantly more effective than TL

H2 (effectiveness)

H2-a2 ML is highly significantly more effective than TL
H3-0 There is no difference in efficiency between TL, IL, and ML. Cannot be rejected

H3 (efficiency)
H3-a There is a significant difference in efficiency between TL, IL, and ML.
H4-0 There is no difference in user confidence between TL, IL, and ML. Cannot be rejected

H4 (user confidence)
H4-a There is a significant difference in user confidence between TL, IL, and ML.
H5-0 There is no difference in subjective supportiveness between TL, IL, and ML. Cannot be rejected

H5 (subjective supportiveness)
H5-a There is a significant difference in subjective supportiveness between TL, IL, and ML.

reviews. In addition, ml-MSCs is also more expressive and effective
compared to instance-level bMSCs. Although this is not by a signif-
icant margin, we assume that this effect is indeed present but with a
smaller effect size compared to type-level bMSCs. Likely, due to the
limited number of participants, significance was not reached.

Furthermore, ml-MSCs is most efficient and most supportive com-
pared with type-level and instance-level bMSCs. Hence, we can con-
clude that the use of multi-levle MSCs supports manual validation
better than the use of type-level or instance-level bMSCs.

Relationship between type-level and instance-level bMSCs. To sum
up results regarding type-level and instance-level bMSCs, we found
that:

∙ IL is highly significantly more expressive than TL.

∙ IL is significantly more effective than TL.

∙ TL leads to most confident results (although the experiment
could not detect a statistically significant difference).

∙ TL is more efficient and supportive than IL (although the
experiment could not detect a statistically significant
difference).

These findings show, while instance-level bMSCs are more expres-
sive and effective than type-level bMSCs, using diagrams on the
type-level seems to be more efficient, leads to more confident deci-
sions, and is seen as more supportive. Hence, it can be concluded
that instance-level bMSCs do have other, subjective advantages over
type-level bMSCs and vice versa (which were beyond the scope of
this investigation).

Interpretation. In comparison of type-level and instance-level dia-
grams, we see that bMSC on the instance-level are more expres-
sive and more effective but bMSC on a type-level are more efficient,
users’ are more confident when using type-level MSC and find it
more supportive for their tasks. These findings concur with find-
ings from previous work comparing type-level and instance-level
MSCs of different size [64].

This experiment has shown that multi-level MSCs combine the
benefits of MSC on instance-level (i.e., they are expressive and
efficient) and type-level (i.e., they are efficient, user confidence
increasing, and supportive). Furthermore, they are—if the used
abstractions are chosen appropriately—even more expressive and
effective than MSC on an instance-level and more efficient than
MSC on a type-level. However, there seems to remain a minor dis-
advantage compared to MSC on type-level when it comes to user
confidence and subjective supportiveness. It is to note that these dif-
ferences were not statistically significant.

8.2. Threats to Validity

Despite our efforts to carefully design our empirical validation of
ml-MSCs, as with any empirical study, some threats to validity
remain. These are discussed in the following.

Internal validity. The mode of experimentation may have allowed
some participants to not take the experiment seriously and answer
in patterns. To address this, we checked all data sets carefully and
discarded incomplete and irregular responses. Thus we are confi-
dent that our conclusions are only based on adequate responses.
Another threat, however, is possible researcher bias in selection of
the selected stakeholder intentions. To address this issue, we asked
academic and industry collaborators to validate our selection. We
are reasonably confident that this minimized bias, but may possibly
not have entirely eliminated it.

External validity. To foster external validity, we recruited partic-
ipants from typical conceptual modeling backgrounds. To what
degree these results are generalizable to members of the industry
with less modeling background is an open question, however we
feel confident that the modeling task reported herein is industry-
typical, as confirmed by our industry partners. Moreover, we used
an industry-realistic case example (albeit not a real one) to from the
avionics domain. While we took great care to ensure generalizabil-
ity to the automotive domain (and, conceivably, other industries),
we do not yet have evidence to what degree these results generalize.
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Conclusion validity. Conclusion validity is threatened by inherent
researcher bias, as we had an interest in showing the usefulness of
multi-level MSC. We hence adopted a strict threshold of 95% and
reported positive and negative results. Consequently, as has been
shown in the experiment results, descriptive statistics in many cases
indicate differences, which turned out to be not statistically signif-
icant, which we assume is a result of the limited number of partici-
pants. While we strive for a repetition with more participants this is
a challenging task taking availability of experienced industrial vol-
unteers into account.

Construct validity. We used an experimental setup, which has also
been used in many other published studies (see Section 2.3). In
addition, experimental materials were discussed with industry part-
ners to ensure not only generalizability but also adequacy of the
limited representation format of an online questionnaire. The use
of online questionnaire poses another threat to construct validity,
which we opted for due to the benefits for participant recruitment.

8.3. Deductions and Inferences

Under consideration of the threats to validity and the fact that some
statistical tests did not yield a level of significance but that findings
well align with previous experiments, we are confident to claim that
the purposeful use of multi-level MSC is beneficial compared to the
use of only either type-level MSC or instance-level MSC. As we have
already shown that MSC in general are good language to support
manual validation tasks [57,59], this indicates that the use of multi-
level MSC can considerably support validation.

This seems to be particularly true for collaborative automotive CPS,
where the sheer number of instances to be considered during val-
idation of functional behavior becomes infeasible to investigate
manually. Therefore, ml-MSC can be used to limit the size of the
validation task while at the same time increasing effectiveness and
efficiency of the investigation.

However, it remains unclear why increased expressiveness, effec-
tiveness, and efficiency did not yield in significantly increased user
confidence and subjective supportiveness. As this is a threat to man-
ual validation tasks—since the perception of the reviewer does not
fit the actual performance—future work remains to investigate this
threat and to propose alleviation. Nevertheless, we found the pro-
posed use of ml-MSC most beneficial when it comes to manual val-
idation in the first place.

9. CONCLUSION

In this paper, we have argued that for validation of the functional
behavior of collaborative automotive CPSs, the inspection of type-
level models is insufficient as some defects do only occur in specific
interaction scenarios. Therefore, the validator needs to investigate
the instance-level to adequately consider and detect these poten-
tial functional inadequacies. However, due to the variety of differ-
ent compositions to be considered in instance-level scenarios, an
amount of instance-level models would need to be investigated that
is not feasible to handle. To this end, we have investigated whether
the use of multi-level models can mitigate this issue.

We contributed the theoretical underpinnings and two processes
to systematically derive ml-MSCs. ml-MSCs are a variation of tra-
ditional ITU MSCs that allows for the specific interrelation of
instance-level and type-level information within the same diagram.
We have proposed that their use is particularly beneficial for man-
ual validation of collaborative automotive CPS functionality, as
their development makes it necessary to investigate the anticipated
behavior of different types of systems and also the interactions
between several system instances of different types at run time.

To investigate whether the use of multi-level modeling can aid
in validation, we conducted a controlled experiment using the
proposed ml-MSCs. We compared the use of ml-MSCs to MSCs
on type- and instance-level regarding expressiveness, effective-
ness, efficiency, confidence, and subjective supportiveness. Results
showed that using ml-MSCs during reviews of collaborative CPS
specifications allows for significantly easier and more accurate
identification of defects. However, there was no impact on time
needed for inspection, or the users’ confidence or the subjective
supportiveness compared to instance-level or type-level represen-
tations. Thus, we can conclude that ml-MSCs lead to significantly
more expressive review artifacts and significantly more effective
reviews compared to type-level MSCs, while at the same time
the amount of ml-MSCs is considerably smaller than when using
instance-level MSCs. Hence, we found ml-MSCs to be a good means
to support the validation of collaborative CPS.

While we envision ml-MSCs to be particularly useful in collab-
orative runtime settings as outlined in Section 1, in principle,
the fundamentals presented in this manuscript can be applied in
more general, non-CPS settings as well. Thus, future work may be
concerned with exploring the impact of ml-MSCs and multi-level
modeling in more detail, particularly with more rigorous experi-
mentation using higher sample size and industry representatives.
We hope that this will help us identify good practices for the cre-
ation of ml-MSCs and the definition characteristics to define what
makes an ml-MSC a good review artifact for inspections. More-
over, extending ml-MSCs to consider timing requirements, e.g., by
extending Timed Automata [82] with the concepts presented herein
may be a promising avenue to semi-automatically uncover certain
types of defects (e.g., convoy speed propagation delay in large CPS
networks [23]).
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