
RESEARCH ARTICLE

The Impact of Applying Different Pre-Processing
Techniques on Swahili Textual Data Using Doc2Vec
Bernard Masua1,*, Noel Masasi1,a, Hellen Maziku1,b, Betty Mbwilo1,c

1College of Information and Communication Technologies (CoICT), University of Dar es Salaam, Dar es Salaam, Tanzania
aEmail: noeliasmasasi@gmail.com
bEmail: maziku.hellen@udsm.ac.tz
cEmail: engbettie@gmail.com

ABSTRACT

Data pre-processing is an important step in machine learning text classification as it improves
data quality and hence improves performance of trained algorithms. We experimentally compare
the following pre-processing techniques: punctuation removal, lowercasing, typos replacement,
slang replacement and stop-word removal on a Swahili short message service (SMS) dataset for
topic classification. Different machine learning algorithms are applied such as Random Forest,
Stochastic Gradient Descent, RNN LSTM Unidirectional, RNN LSTM Bidirectional and Support
Vector Machine. We analyze the impact of the pre-processing techniques on classification accuracy
and f1-score. Our experiments show that all pre-processing steps, when applied separately,
have a positive impact on the performance of all evaluated classification algorithms. Among all
experimented pre-processing steps, stop-word removal has the highest impact on performance
of both accuracy and f1-score metrics. Also, of all evaluated algorithms, Random Forest and
Stochastic Gradient Descent are the most positively affected with pre-processing steps.

ARTICLE DATA
Article History
Received 30 March 2023
Revised 15 May 2023
Accepted 22 May 2023

Keywords
Natural Language Processing
Text pre-processing
Swahili language
Stop words
Slang
Typos
Machine Learning

*Corresponding author. Email: bhrmasua@gmail.com
© 2023 The Authors. Published by Athena International Publishing B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

1.  INTRODUCTION

Natural Language Processing (NLP) is a field of Artificial
Intelligence that gives machines the ability to read,
understand and derive meaning from human languages.
Swahili is a language spoken by the majority in East and
Central Africa. However, Swahili is considered as a low
recourse language and there is not enough research on
machine learning techniques that utilize textual data
based on the Swahili language. Any language's basic
sentence structure employs both a subject-verb (SV) and
a subject-verb-object (SVO) formula. But they differ when
a sentence gets more complex, even for some relatively
simple sentences. Language structure differs on word

order, use of unique words, time and environment.
Swahili is distinguished from other languages by its
basic syllable structure, which includes no consonant
clusters, no final consonants and the addition of a vowel
to loanwords that finish in a consonant [1]. This article
uses a Swahili dataset collected from SMS platforms on
different topics ranging from education, nutrition, health
and corona, among others. As the number of collected
messages increases there is a need to automatically
classify each incoming message into its corresponding
topic category.

SMS platforms are used to collect opinions that can be
used to generate insights on different matters. As people
express their views and opinions on certain things, they

HIGHLIGHTS
•	 The study aims to evaluate the performance of classification algorithms which are vital in

automating error-prone manual work.
•	 The study illustrates the importance and effects of different pre-processing steps for Swahili

textual data.
•	 This article will enable future researchers to decide which pre-processing steps for Swahili

textual data are best for their respective machine learning tasks.

Natural Language Processing Research
Volume 3, Issue 1–2, December 2023, pp. 1–13
DOI: https://doi.org/10.55060/j.nlpre.230606.001, ISSN (Online): 2666-0512
Journal home: https://www.athena-publishing.com/journals/nlpre

mailto:bhrmasua@gmail.com

2 B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

usually send SMS messages that contain significant
amounts of noise. We define noise as data that do not
contain any useful information for the analysis at hand and
that mislead machine learning algorithms into incorrect
decisions. Noise can be punctuations, stop words, spelling
and typos, slang and non-alphabetic characters which
affect data quality. Data quality is a feature enhanced
through a series of data pre-processing steps. Data pre-
processing is critical in preparing Swahili textual data
for NLP classification tasks. It can improve the accuracy
and efficiency of the classification model, while also
making it easier to analyze the textual data and extract
meaningful insights. Hence, the following pre-processing
steps should be considered: removing punctuations and
other non-alphabetic characters, converting all text into
lower case, replacing common typos with proper words,
replacing common Swahili slang with proper words,
and removing stop words. These steps were applied
separately and then each algorithm was re-trained and
re-evaluated to assess the effects.

The purpose of this study is to assess common pre-
processing techniques from previous studies and to
evaluate their impact on the performance of classification
algorithms. Accuracy and F1 score metrics are used
to evaluate the performance of algorithms. Document
to Vector (Doc2Vec) [2] is used as a feature extraction
approach for all algorithms implemented in this study.
Fine-tuned models of each algorithm are used as a base
to compare the impact of each pre-processing step. The
contributions of this article are as follows:

1.		 The study contributes to the body of knowledge that,
among all evaluated algorithms, Random Forest (RF)
and Stochastic Gradient Descent (SGD) are more
affected by pre-processing steps on Swahili textual
data, whereas LSTM Unidirectional and Support
Vector Machine (SVM) are less affected by these pre-
processing steps.

2.		 All pre-processing steps tested show a positive
impact on the performance of the evaluated
classifiers, but a higher impact was observed when
stop words were removed from the Swahili textual
data. Hence this should always be considered during
pre-processing.

3.		 Research developed and contributed common
Swahili Stop Words dataset containing 254 unique
words [3], common Swahili Slangs dataset containing
234 words for slang and their respective Swahili
proper words [4] and common Swahili Typos dataset
containing 431 misspelled words their respective
Swahili proper words [5].

The organization of this paper is as follows. Section 2
reviews some of the related literature. In Section 3,
experiments are discussed in terms of the dataset
used, the pre-processing methods, the feature selection
approach, the classification algorithms and the

evaluation metrics deployed. Section 4 discusses the
findings and the results. The conclusions are detailed in
Section 5, followed by compliance statements and the
list of references.

2.  RELATED WORKS

Etaiwi et al. [6] evaluated the impact of applying different
pre-processing steps on review spam detection. Among
the steps used were Part-of-Speech (POS) tagging,
n-gram term frequencies, stemming, and stop word and
punctuation marks filtering. The study used a dataset
proposed in [7,8] consisting of about 1600 reviews. The
authors compared truthful and deceptive positive and
negative reviews for hotels found on the TripAdvisor
website. The authors observed that these steps affect
the overall accuracy of the review spam detection task
which was carried out by training and evaluating the
performance of the Naïve Bayes (NB), Support Vector
Machines (SVM), Decision Tree, Random Forest (RF)
and Gradient Boosted Trees algorithms. Results showed
that each different pre-processing step may have a
positive or a negative impact on the performance of
each algorithm. However, the authors did not consider
replacing common slang and typos with proper words,
although these two steps depend on the content and
source of the dataset used.

A paper written by Işik et al. [9] about the impact of text
pre-processing on the prediction of review ratings by
using the K-Nearest Neighbors (KNN), Decision Tree (DT),
Random Forest (RF), Logistic Regression (LR), Stochastic
Gradients Descent (SGD), Naïve Bayes Classifier (NB)
and Support Vector Machine (SVM) classifiers of the
Natural Language Toolkit (NLTK) to get accuracy results
for all types of pre-processing methods. The study used
a real e-commerce dataset extracted from Yelp in June
2018 consisting of 10,000 restaurant reviews aiming
to analyze the effects of pre-processing methods when
finding the star ratings of restaurants by analyzing the
reviews. The study highlights that text pre-processing
has a remarkable impact on the performance of
classifiers. Some pre-processing methods have a positive
or a negative effect on the classification accuracy, while
others have a neutral effect. Also, the order of applying
the pre-processing methods matters. The authors did
not consider replacing common slang with proper words
as one of the text pre-processing steps.

In [10] the impact of pre-processing steps on the accuracy
of machine learning algorithms in sentiment analysis was
evaluated by using a dataset extracted from the Twitter
API with the KNIME tool that filtered only tweets written
in the English language. For the sentiment analysis task,
SVM, NB and Maximum Entropy (MaxE) algorithms were
used. The results illustrated that the accuracy of models
generated by the SVM and NB algorithms was improved
positively, while that of MaxE remained constant after

3B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

applying pre-processing steps. This article calculated the
accuracy of the three machine learning algorithms before
and after applying the pre-processing steps without
considering each step separately to evaluate its effect on
the trained algorithm performance.

3.  MATERIALS, THEORY AND METHODS

This section contains a brief discussion on the dataset
used for the evaluation, the pre-processing steps, the
feature selection approach, the classification algorithms
and the evaluation measures employed within this study.

3.1.  Dataset

The Swahili textual data used in this study consist of
short text messages received on U-Report Tanzania.
U-Report has over 22 million subscribers worldwide
and over 170,000 subscribers in Tanzania, and is a global
platform that allows young people to express their views
on topics across various fields such as Health, Education,
Menstrual Hygiene, Corona, WASH, Nutrition, HIV and
Violence against Children. The dataset contains 64,390
rows and 3 columns which are Topic Number, Topic
Name and Text.

Datasets were split in a ratio of 75% by 25% for training
and testing respectively. To ensure that the training
dataset included all possible patterns used for defining
the problem and extended to the edge of the modeling
domain, we first generated data frames for each class of
text, then split each class using the Sklearn function by
a 75:25 ratio with enabled random state and combined
the resulting outputs to form the training dataset and
testing dataset. Table 1 shows the number of sentences
or rows each topic contributes to the labeled dataset.
Fig. 1 shows the percentage contribution of each topic in
rows of the labeled dataset.

3.2.  Pre-Processing Methods

NLP pre-processing steps vary depending on the nature
of the data and the intended machine learning task.
This study uses a Swahili dataset collected from youth
through an SMS platform with the task of categorizing
each SMS into an identified topic category. The following
pre-processing steps were considered to prepare the
dataset for training and testing classification algorithms.

3.2.1. � Removing Punctuations and Other
Non-Alphabetic Characters

Punctuations are noisy data which may mislead trained
algorithms to make wrong decisions during topic
classification. Hence punctuations should be removed
during data pre-processing [11]. Also, removing

punctuations and non-alphabetic characters will provide
relief to processors during training and reduce the
overall processing time and resources.

3.2.2.  Converting Text to Lowercase

Uppercase and lowercase characters or words are treated
differently by computers. Hence the same words or
characters with different cases will be assigned different
vectors during the vectorization step. By doing so, the
same words are merged to have clean token information
and reduce dimensionality. This is performed at an early
stage of pre-processing, to help other pre-processing
stages perform well and to reduce the effect of missing
the word with letters written in different cases.

3.2.3.  Replacing Common Typos

The same words with slightly different spelling are
treated differently by computers and are therefore
assigned different vectors during the vectorization step.
Performing spelling corrections allows the same words
to be merged to have clean token information and reduce
dimensionality. This study applies a typos dataset from
[5] to replace misspelled Swahili words with proper
words.

Corona
21%

Education
26%

HIV Aids
8%

Health
7%

Menstrual
Hygiene

6%

Nutrition
8%

Others
3%

U-Report
7%

Violence Against
Children (VAC)

11%

WASH
3%

Topic Labeled Statistic Graph

Figure 1.  Dataset topic labeled in percentages.

Topic Name Topic Text

Corona 9 13,832

Education 3 16,682

HIV AIDS 4 4,829

Health 1 4,197

Menstrual Hygiene 7 3,768

Nutrition 2 4,984

Others 8 2,039

U-Report 10 4,758

Violence Against Children (VAC) 5 7,369

WASH 6 1,932

Table 1.  Topics labeled statistic.

4 B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

3.2.4.  Replacing Common Swahili Slang

Words that are regarded as very informal are known
as slang. Slang depends on location, on particular
context or on groups of people and is treated differently
by computers and thus assigned different vectors during
the vectorization step. Performing replacement of slang
means that words with similar meaning are merged to
have clean token information and reduce dimensionality.
This study applies a slang dataset from [4] to replace
slang with proper words.

3.2.5.  Removing Stop Words

The common Swahili stop words dataset from [3] consists
of a list of words which do not add much meaning to a
sentence. Hence these can be ignored without sacrificing
the meaning of sentences. Stop words are removed
because they do not contribute to finding the context
or true meaning of a sentence. Removing stop words
reduces dimensionality during training and provides
relief to processors, hence reducing overall training time.

3.3.  Text Representation Techniques

Text features can be extracted by using different methods.
This study uses Doc2Vec [2], also known as Para2Vec,
which is an NLP technique used to represent documents
as a vector and is a generalization of the Word2Vec
method. Doc2Vec creates a numeric representation of a
document like a sentence or a paragraph, regardless of its
length. Documents, unlike words, do not come in logical
structures. So instead of using the Word2Vec approach,
another vector was added to represent a paragraph or
sentence [12].

To generate a predictive model, this technique creates
a distributed semantic representation of words in the
document that is trained in the context of each word. It
learns how to connect documents and words by learning
a conceptual representation of a document from a Swahili
corpus of documents. In a process of vectorizing Swahili

paragraphs/sentences, every paragraph/sentence is
mapped to a unique vector. During training, the model
learns vectors which are a semantic representation of the
documents. To represent each document, the paragraph
and word vectors are averaged or concatenated to
predict the next word in context [13]. The averaged or
concatenated vectors of paragraphs/sentences are used
to build the vocabulary from a sequence of sentences.
This represents the vocabulary of the model which keeps
track of all unique Swahili words.

After training, the model is inspected to ensure that it
learned all the words and their contextual meaning.
Validation is done by generating most similar words
using the most_similar function in the Gensim library.
When a word is passed, the model lists all words in the
document which contextually resemble the passed word
as illustrated in Table 2.

3.4.  Classification Algorithms

The scope of this research involves checking the impact
of pre-processing techniques on the performance of
the following classification algorithms: Random Forest,
Stochastic Gradient Descent, RNN LSTM Unidirectional,
RNN LSTM Bidirectional and Support Vector Machine.

3.4.1.  Random Forest

Random Forest (RF) [14], as its name implies, consists of a
large number of individual decision trees that operate as an
ensemble. Each individual tree in the random forest spits
out a class prediction and the class with the most votes
becomes the model’s prediction. The trees in RF protect
each other from their individual errors: while some trees
may be wrong, many other trees will be right, so as a group
the trees are able to move in the correct direction [15].

3.4.2.  Stochastic Gradient Descent (SGD)

Gradient Descent [16] is an iterative algorithm that starts
from a random point on a function and travels down its

S/No. Word Near/Similar Word With Weight

1 ajira [('mikopo', 0.6587635278701782), ('mitaji', 0.6048551797866821), ('pensheni', 0.5972285270690918), ('motisha',
0.5750974416732788), ('leseni', 0.5745390057563782), ('huduma', 0.5536848902702332), ('nguvukazi',
0.5497235059738159), ('uwakilishi', 0.5494844913482666), ('raslimali', 0.5410809516906738), ('mapato',
0.5391908884048462)]

2 kuajiriwa [('kuandikishwa', 0.6560262441635132), ('kustaafu', 0.6464136838912964), ('kuwaajiri', 0.6243953704833984),
('kuajiri', 0.6227836608886719), ('kujisajili', 0.6226930618286133), ('kujiendeleza', 0.6165447235107422),
('kujiandikisha', 0.6145368814468384), ('kuhitimu', 0.601360023021698), ('kusajiliwa', 0.5967570543289185),
('kujiajiri', 0.585351288318634)]

3 kujiajiri [('wajiajiri', 0.6244261264801025), ('kujiari', 0.60692298412323), ('kulima', 0.5857206583023071), ('kuajiriwa',
0.585351288318634), ('kujitegemea', 0.5762639045715332), ('mitaji', 0.5622026920318604), ('kujiendeleza',
0.559045135974884), ('kujihudumia', 0.5459901690483093), ('kimtaji', 0.5443302392959595), ('kuviendesha',
0.5207050442695618)]

Table 2.  Top-10 similar/related words.

5B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

slope in steps until it reaches the lowest point of that
function. SGD randomly picks one data point from the
whole data set at each iteration to significantly reduce
the computations [17].

3.4.3.  RNN

Recurrent Neural Network (RNN) [18] is a
generalization of feedforward neural network that has
an internal memory. RNN is recurrent in nature since it
executes the same function for each data input, and the
current input's outcome is dependent on the previous
computation. RNN algorithms are included in this study
because they are important and powerful in most NLP
works. RNNs are designed to use sequential data, and
the result is enhanced by storing past calculations.
RNNs have a memory function that preserves previously
calculated information. RNNs with LSTM units have the
advantage of being able to learn long-term dependencies
by altering the information in a cell state using three
separate gates [19].

Bidirectional and Unidirectional RNN LSTM are the two
forms of RNN LSTM used in this study. Bidirectional
LSTM will handle generated Swahili text vectors as
inputs in two ways: from the past to the future and from
the future to the past. Bidirectional LSTM differs from
unidirectional in that it uses LSTM that runs backward to
preserve information from the future, and by combining
the two hidden states, it can maintain information from
both the past and the future at any point in time [20].

3.4.4.  Support Vector Machine

The objective of the Support Vector Machine algorithm
[21] in this research is to find a hyperplane in an
N-dimensional space, where N is the number of features
from Swahili text vectors that distinctly classifies the
data points into mentioned topics. Hyperplanes are
decision boundaries that help classify the data points.
Data points falling on either side of the hyperplane can
be attributed to different topics. Also, the dimension of
the hyperplane depends upon the number of features.
In this study the number of input features is 10, so the
hyperplanes generated to distinguish 10 topics are just
9 lines. To separate classes of data points, there are many
possible hyperplanes that could be chosen. The objective
is to find a plane that has the maximum distance between
data points of both classes. Maximizing the margin
distance provides some reinforcement so that future text
data points can be classified with more confidence [22].

3.5.  Evaluation Metrics

For performance evaluation, we use accuracy and
F-Measure (f-score) since f-score measures recall and
precision at the same time. In order to have a testing
dataset, the dataset is split into training and testing sets

with a ratio of 3:1 respectively. The dataset splitting
process was done with the consideration that each topic
must be in both sets with the same ratio of 3:1. This
will reduce the chance of overfitting and underfitting
that may occur when using a random split method. The
Swahili testing dataset was generated with 25 percent
of about 16,098 sentences from each topic and was used
for testing each generated Swahili model. The equation
for calculating the f-score is [23]:

F measure Recall Precision
Recall Precision

- =
+

2* *

where

Recall TP
TP FN

TP
TP FP

=
+

=
+

and Precision

and the equation for calculating accuracy is:

Accuracy TP TN
TP TN FP FN

=
+

+ + +

True Positive (TP): the model predicted positive and it
is true.
True Negative (TN): the model predicted negative and it
is true.
False Positive (FP) (Type 1 Error): the model predicted
positive and it is false.
False Negative (FN) (Type 2 Error): the model predicted
negative and it is false [23].

3.6.  Hyper-Parameters Tuning

Hyper-parameters are those parameters that are not
altered during the learning process. Parameter tuning is
used to configure a model or algorithm while decreasing
the cost function. This is simply an optimization loop built
on top of a machine learning model learning to discover
the set of hyper-parameters that lead to the lowest error
on the validation set in the tuning process. There are
three different types of hyper-parameter optimization
algorithms: comprehensive space search that includes all
available search options, surrogate models that predict
the local lowest validation loss when hyper-parameters
are fitted on earlier trials, and the third category which
combines the two previous ideas [24].

In this study, we employ the first category to fine-tune
parameters on algorithms by combining two hyper-
parameter optimizer techniques: Random Search and
Grid Search. Random Search is a type of hyper-parameter
optimization algorithm used in space category exhaustive
search that randomly samples the search space rather
than discretizing it with a cartesian grid. It has a time
budget in the sense that the number of trials to end the
search must be defined [25]. Grid Search is a type of
hyper-parameter optimization algorithm used in space
category exhaustive search, where the complete search
space is discretized as the cartesian product of each

6 B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

hyper-parameter. The algorithm then performs parallel
learning for each of the hyper-parameter combinations,
evaluates their performance and chooses the best one
[26]. Table 3 shows fixed tuned parameters for each
algorithm which are later used in the study to observe
the impact of Swahili text pre-processing on machine
learning classification of topics.

4.  RESULTS AND DISCUSSION

In the experimentation phase, Doc2Vec is implemented
using Sklearn and is used to extract features for all
classification algorithms. The Random Search method
is used to determine a set of optimal hyper-parameters.
Then, the generated set of parameters is used as input
for the Grid Search method to obtain hyper-parameters
with the lowest validation errors. This process is done
to reduce computational resources and the curse of
dimensionality. Table 4 shows improvements in accuracy
and f1-score after parameter fine-tuning. Swahili models
generated from this study can be accessed through a
GitHub repository [27].

4.1.  Pre-Processed Dataset Analysis

First each pre-processing step on the dataset was
performed separately and later on the combination of
steps was done all together. The total number of words
in the dataset was 94,153 with 606,009 characters. The
punctuation removal step affects 0.63% of all characters
present in the dataset which is equal to 3,814 characters.

With the typos correction step 650 words were affected
which is equal to 0.69%. For slang correction 0.05% of
words, which is equal to 47 words, were affected. Stop
word removal affected 15.67% of words which is equal
to 14,754 words. Also, after performing all the steps,
25,831 words which is equal to 27.44% of all the words,
and 92,897 characters which is equal to 15.31% of all the
characters, were affected.

4.2.  Effect of Fine-Tuning

By using the Doc2Vec text representation technique,
experiments show that without hyper-parameter
fine-tuning, the model generated by the RNN LSTM
Unidirectional algorithm outperforms other algorithms
and registers an accuracy of 79.33% and f1-score of
80.26%. After making improvements to the model by
fine-tuning, the RNN LSTM Unidirectional model still
outperforms other models with an accuracy of 81.50%
and f1-score of 82.47%. The improvements by fine-
tuning vary from model to model with SVM registering
the highest improvement in both accuracy and f1 score
by 20.57% and 17.94% respectively, as shown in Table 4.
When employing Swahili textual data, the fine-tuning
process has the greatest beneficial impact on accuracy
and f-score for all models.

4.3.  Effect of Removing Punctuations

Table 5 shows the results obtained after removing
punctuations which are ! ” # $ % ′ () *+ , − . / : ; < = > ?

S/No. Algorithm Parameters

1 SGD alpha = 0.001, loss = 'hinge', max_iter = 100, random_state = 42, tol = None

2 SVM C = 1.2, kernel = 'rbf', probability = True, random_state = 0

3 RF min_samples_split = 5, criterion = 'gini', n_estimators = 10000, n_jobs = –1, random_state = 0

4 RNN LSTM Uni Max_NB_Words = 100000, Max_Sequence_Length = 950, Embedding_Dimension = 300, LSTM
(100, SpatialDropout = 0.2, recurrent_dropout = 0.2), Dense = 10, activation = 'softmax', loss =
'categorical_crossentropy', optimizer = 'adam'

5 RNN LSTM Bi Max_NB_Words = 100000, Max_Sequence_Length = 950, Embedding_Dimension = 300,
Bidirectional (LSTM (100, return_sequences = True, dropout = 0.50), merge_mode = 'concat'),
Dense = 100, activation = 'softmax', loss = ' sparse_categorical_crossentropy, optimizer = 'adam'

Table 3.  Tuned parameters for classification algorithms.

Algorithm Accuracy without
fine-tuning

F1-score without
fine-tuning

Accuracy with
fine-tuning

F1-score with
fine-tuning

Accuracy
improvement after

fine-tuning (%)

F1-score
improvement after

fine-tuning (%)

SGD 0.6672 0.6577 0.7654 0.7733 14.72 17.58

SVM 0.6553 0.6733 0.7901 0.7941 20.57 17.94

RF 0.5814 0.6336 0.6846 0.7193 17.75 13.53

LSTM Uni 0.7933 0.8026 0.8150 0.8247 2.74 2.75

LSTM Bi 0.7756 0.7818 0.8070 0.8024 4.05 2.63

Table 4.  Improvements made to the model by fine-tuning.

7B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

@ [\] _‘ { | } and are 0.63% of all characters in the
dataset. Results show that punctuations removal has
a positive effect on the accuracy and f-score for all the
trained models. The improvements vary from model to
model with SGD registering the highest improvement
in accuracy of 1.33% and LSTM Bi achieving the highest
improvement in f1-score of 0.86%.

4.4.  Effect of Lowercasing

Table 6 shows the results obtained after changing
all characters to lowercase. 14.31% of all words are
affected by this step, which leads to a reduction in
the number of vectors generated during vectorization
since both lowercase and uppercase characters in the
same words are mapped to a single vector. Results
show that lowercasing has a positive effect on the
accuracy and f-score for all the trained models. The
improvements vary from model to model with SGD
registering the highest improvement in accuracy of

2.48% and RF achieving the highest improvement in
f1-score of 1.65%.

4.5. � Effect of Replacing Typos
With Proper Words

Table 7 shows the results obtained after replacing common
Swahili typos with proper Swahili words. According to
the dataset used the word “maswali” can be commonly
misspelled and written in four different ways which are
“maswal”, “maswar”, “maxwal” and “maxwali”. Without
replacing typos, all these five words will be represented
with five different vectors. So correcting typos leads to
a reduction in the number of vectors generated during
vectorization and 0.69% of words are affected by this step.
Results show that replacing typos with proper words has
a positive effect on the accuracy and f-score for all the
trained models. The improvements vary from model to
model with SGD registering the highest improvement in
accuracy and f1-score of 3.23% and 2.66% respectively.

Algorithm
Without Pre-Processing Punctuations Removal Accuracy

improvement (%)
F1-score

improvement (%)Accuracy F1-score Accuracy F1-score

SGD 0.7654 0.7733 0.7756 0.7791 1.33 0.75

SVM 0.7901 0.7941 0.7982 0.7994 1.03 0.67

RF 0.6846 0.7193 0.6864 0.7211 0.26 0.25

LSTM Uni 0.8150 0.8247 0.8161 0.8267 0.13 0.24

LSTM Bi 0.8070 0.8024 0.8089 0.8093 0.24 0.86

Table 5.  Results after removing punctuations.

Algorithm
Without Pre-Processing Lowercasing Accuracy

improvement (%)
F1-score

improvement (%)Accuracy F1-score Accuracy F1-score

SGD 0.7654 0.7733 0.7844 0.7801 2.48 0.88

SVM 0.7901 0.7941 0.7996 0.8012 1.20 0.89

RF 0.6846 0.7193 0.6923 0.7312 1.12 1.65

LSTM Uni 0.8150 0.8247 0.8187 0.8275 0.45 0.34

LSTM Bi 0.8070 0.8024 0.8110 0.8133 0.50 1.36

Table 6.  Results after lowercasing.

Algorithm
Without Pre-Processing Spelling Corrections Accuracy

improvement (%)
F1-score

improvement (%)Accuracy F1-score Accuracy F1-score

SGD 0.7654 0.7733 0.7901 0.7939 3.23 2.66

SVM 0.7901 0.7941 0.7983 0.8051 1.04 1.39

RF 0.6846 0.7193 0.6983 0.7382 2.00 2.63

LSTM Uni 0.8150 0.8247 0.8193 0.8289 0.53 0.51

LSTM Bi 0.8070 0.8024 0.8188 0.8152 1.46 1.60

Table 7.  Results after spelling corrections.

8 B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

4.6. � Effect of Replacing Slang
With Proper Words

Table 8 shows the results obtained after replacing
common Swahili slang with proper Swahili words. The
Swahili dataset used show that the word “mvulana” can
be commonly written in five different ways which are
“aguy”, “chali”, “jamaa”, “mhi” and “kijanaa”. Without
replacing slang, all these six words will be represented
with six different vectors. So correcting slang leads to
a reduction in the number of vectors generated during
vectorization and 0.05% of words are affected by this
step. Results show that replacing slang with proper words
has a positive effect on the accuracy and f-score for all
the trained models. The improvements vary from model
to model with SGD registering the highest improvement
in accuracy of 2.05% and LSTM Bi achieving the highest
improvement in f1-score of 2.23%.

4.7.  Effect of Removing Stop Words

Table 9 shows the results obtained after removing
common Swahili stop words. 15.67% of all words are

affected by this step, which leads to a reduction in the
number of vectors to be used during training, hence
improving the overall performance. Results show
that removing stop words has a positive effect on the
accuracy and f-score for all the trained models. The
improvements vary from model to model with SGD
and RF registering the highest improvements in both
accuracy and f1-score. The highest improvement in
accuracy is attained by SGD with 6.62%, followed by
RF with 6.38%, whereas the highest improvement in
f1-score is attained by RF with 8.19%, followed by SGD
with 6.01%.

4.8. � Effect of Performing All
Pre-Processing Steps

Table 10 shows the results obtained after performing
all the pre-processing steps, starting with removing
punctuations, then lowercasing, then replacing typos
with proper Swahili words, then replacing slang with
proper Swahili words, and finally removing common
Swahili stop words. Results show that performing
data pre-processing in that order has a positive effect

Algorithm
Without Pre-Processing Slang Correction Accuracy

improvement (%)
F1-score

improvement (%)Accuracy F1-score Accuracy F1-score

SGD 0.7654 0.7733 0.7811 0.7861 2.05 1.66

SVM 0.7901 0.7941 0.8022 0.8085 1.53 1.81

RF 0.6846 0.7193 0.6971 0.7342 1.83 2.07

LSTM Uni 0.8150 0.8247 0.8156 0.8255 0.07 0.10

LSTM Bi 0.8070 0.8024 0.8189 0.8203 1.47 2.23

Table 8.  Results after correcting slang.

Algorithm
Without Pre-Processing Stop Word Removal Accuracy

improvement (%)
F1-score

improvement (%)Accuracy F1-score Accuracy F1-score

SGD 0.7654 0.7733 0.8161 0.8198 6.62 6.01

SVM 0.7901 0.7941 0.8183 0.8251 3.57 3.90

RF 0.6846 0.7193 0.7283 0.7782 6.38 8.19

LSTM Uni 0.8150 0.8247 0.8332 0.8414 2.23 2.02

LSTM Bi 0.8070 0.8024 0.8275 0.8287 2.54 3.28

Table 9.  Results after removing Swahili stop words.

Algorithm
Without Pre-Processing Performing All Steps Accuracy

improvement (%)
F1-score

improvement (%)Accuracy F1-score Accuracy F1-score

SGD 0.7654 0.7733 0.8188 0.8218 6.98 6.27

SVM 0.7901 0.7941 0.8192 0.8284 3.68 4.32

RF 0.6846 0.7193 0.7363 0.7889 7.55 9.68

LSTM Uni 0.8150 0.8247 0.8379 0.8476 2.77 2.78

LSTM Bi 0.8070 0.8024 0.8363 0.8375 3.63 4.37

Table 10.  Results after performing all pre-processing steps.

9B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

4.10. � Visual Comparison of the Impact
of Pre-Processing

Fig. 3 and Fig. 4 show a visual comparison of the accuracy
and f1-score improvement in percentages for each of
the tested algorithms. The graphs show a positive effect
for all the models. Generally, RF and SGD are highly
affected, while LSTM-Uni and SVM are the least affected
by pre-processing for both accuracy and f1-score. The
pre-processing step of removing stop words has the
most impact on both accuracy and f1-score.

4.11. � Average Performance of
the Tested Models

Table 11 shows the average performance of the tested
algorithms in terms of accuracy and f1-score. Generally,
we obtain the highest average accuracy and f1-score
for LSTM-Uni with 82.35% and 83.29% respectively,
followed by LSTM-Bi with an accuracy of 82.02% and

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

F1-Score Improvements
in Percentages

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Accuracy Improvements
in Percentages

Figure 2.  Average model improvements on the performance after applying all pre-processing steps.

on the accuracy and f-score for all the trained models.
The improvements vary from model to model with RF
registering the highest improvement in accuracy and
f1-score of 7.55% and 9.68% respectively. Note that this
is the highest improvement as compared to the previous
results which only showed improvements after applying
one of the steps.

4.9. � Visual Comparison of Average
Performance Impact

Fig. 2 shows a visual comparison of performance
improvements in percentages of the f1-score and
accuracy by using Doc2Vec as the text representation
technique. The graphs show that all the tested algorithms
are positively affected by the application of pre-
processing steps. Generally, the highest average impact
for the experimented pre-processing steps is attained
by RF followed by SGD for both accuracy and f1-score
metrics.

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Punctuations
Removal

Lowercasing Typos
Corrections

Slang Correction Stop-word
Removal

All Steps

Accuracy Improvements in Percentages

SGD SVM RF LSTM-Uni LSTM-Bi

Figure 3.  Accuracy improvements from each pre-processing step for the tested models.

10 B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Accuracy without
fine tuning

1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 1+2+3+4+5+6

Accuracy Improvement

SGD SVM RF LSTM-Uni LSTM-Bi

Figure 5.  Accuracy improvements after combining the pre-processing steps sequentially.

Algorithm Average Accuracy
Performance

Average F1-Score
Performance

SGD 0.7944 0.7968

SVM 0.8060 0.8113

RF 0.7065 0.7486

LSTM-Uni 0.8235 0.8329

LSTM-Bi 0.8202 0.8207

Table 11.  Average performance of the tested models.

0.00
2.00
4.00
6.00
8.00

10.00
12.00

Punctuations
Removal

Lowercasing Typos
Corrections

Slang
Correction

Stop-word
Removal

All Steps

F1-Score Improvements in Percentages

SGD SVM RF LSTM-Uni LSTM-Bi

Figure 4.  F1-score improvements from each pre-processing step for the tested models.

f1-score of 82.07% when hyper-parameter tuning is
used as a baseline.

4.12. � Sequential Improvements of
Accuracy and F1-Score

Fig. 5 and Fig. 6 show the sequential improvements
of the accuracy and f1-score for each of the tested
algorithms after combining the pre-processing steps
in the sequence: 1 = hyper-parameter fine-tuning, 2 =
removing punctuations, 3 = lowercasing, 4 = correcting
typos, 5 = correcting slang, 6 = removing stop words.
The graphs show a positive effect for all the tested
models with the applied pre-processing sequence. The
hyper-parameter fine-tuning step has the most impact
on both the accuracy and f1-score for all the models.
Also, the combination of all pre-processing steps records

the highest impact on improving the performance of the
tested models.

5.  CONCLUSION

The detailed experiments presented show that all
the pre-processing steps when applied separately
on Swahili textual data have a positive impact on
the performance of all the evaluated classification
algorithms. Among the experimented pre-processing
steps, removing stop words has the highest impact on
the performance of both accuracy and f1-score metrics
when hyper-parameter tuning is used as a baseline step.
The punctuation removal step has the lowest impact
on the performance of both the accuracy and f1-score.
Punctuation removal records the lowest impact because
the Swahili textual dataset used has a low percentage

11B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

0.60

0.65

0.70

0.75

0.80

0.85

F1 score without
fine tuning

1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 1+2+3+4+5+6

F1-Score Improvement

SGD SVM RF LSTM-Uni LSTM-Bi

Figure 6.  F1-score improvements after combining the pre-processing steps sequentially.

of punctuation characters and the effect may increase
when dealing with a dataset containing a larger number
of punctuation characters.

Among all the evaluated algorithms, RF and SGD are
the most affected by the pre-processing steps on
the Swahili textual dataset, whereas LSTM-Uni and
SVM are less affected by the pre-processing steps
experimented in this study. The study shows that the
LSTM-Uni algorithm has the best performance for the
classification of Swahili textual data compared to the
other tested algorithms.

We believe that our study results will help future NLP
and Machine Learning researchers to carefully select
these text pre-processing methods when dealing with
Swahili textual data. Finally, as future work, we plan to
work on improving typos, slang, stop words and Swahili
corpus datasets, to accommodate more words that will
be applied in different topics and to cover different
platforms, both formal and informal platforms, such
as social media. We will also add more pre-processing
steps, for example, stemming, lemmatization, emoticons
replacement, abbreviations and acronyms replacement,
and so on, to our experiment and discover the individual
impact of each pre-processing step in terms of the
performance of machine learning algorithms on Swahili
textual datasets.

Conflict of Interest

All authors certify that they have no affiliations with
or involvement in any organization or entity with any
financial interest or non-financial interest in the subject
matter or materials discussed in this article.

Authors’ Contribution

All authors contributed to the study conceptualization
and design. Material preparation, data collection and
analysis were performed by Bernard Masua and Noel
Masasi. The first draft of the manuscript was written by
Bernard Masua and Noel Masasi, while Hellen Maziku

and Betty Mbwilo commented on prior versions of the
manuscript. All authors read and approved the final
article.

Bernard Masua: study conceptualization and design;
data collection, data curation, data analysis and data
visualization; manuscript writing, reviewing and
editing.
Noel Masasi: study conceptualization and design;
data collection, data curation, data analysis and data
visualization; manuscript writing, reviewing and
editing.
Hellen Maziku: study conceptualization and design;
administration and supervision; manuscript reviewing
and editing.
Betty Mbwilo: study conceptualization and design;
supervision; manuscript reviewing and editing.

Funding

The authors declare that no funding was obtained for
this study.

Data Availability

The common Swahili slang dataset has been published
here: https://data.mendeley.com/datasets/b8tc96xf3h/1.
Repository name: Mendeley Data, DOI: https://doi.
org/10.17632/b8tc96xf3h.1.

The common Swahili typos dataset has been published
here: https://data.mendeley.com/datasets/3xmsjhdrc9/1.
Repository name: Mendeley Data, DOI: https://doi.org/
10.17632/3xmsjhdrc9.1.

The common Swahili stop-words dataset has been
published here: https://data.mendeley.com/datasets/
mmf4hnsm2n/1. Repository name: Mendeley Data, DOI:
https://doi.org/10.17632/mmf4hnsm2n.1.

Source codes are available and can be accessed through
a public GitHub repository here: https://github.com/
LeoVinciTZ/Swahili-NLP/blob/master/Text%20
Classification/Topic_Classification.ipynb.

https://doi.org/10.17632/b8tc96xf3h.1
https://doi.org/10.17632/b8tc96xf3h.1
https://data.mendeley.com/datasets/3xmsjhdrc9/1
https://doi.org/10.17632/3xmsjhdrc9.1
https://doi.org/10.17632/3xmsjhdrc9.1
https://data.mendeley.com/datasets/mmf4hnsm2n/1
https://data.mendeley.com/datasets/mmf4hnsm2n/1
https://github.com/LeoVinciTZ/Swahili-NLP/blob/master/Text%20Classification/Topic_Classification.ipynb
https://github.com/LeoVinciTZ/Swahili-NLP/blob/master/Text%20Classification/Topic_Classification.ipynb
https://github.com/LeoVinciTZ/Swahili-NLP/blob/master/Text%20Classification/Topic_Classification.ipynb

12 B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

Ethics Approval/Consent

Research clearance letters were issued to involved
organizations for data collection. During the data
collection, respondents were briefed on the benefits
of the study and were asked to participate voluntarily.
Respondents were informed and assured that the
research was part of academic requirements.

REFERENCES

[1]	� C.S. Shikali, Z. Sijie, L. Qihe, R. Mokhosi. Better Word
Representation Vectors Using Syllabic Alphabet: A
Case Study of Swahili. Applied Sciences, Vol. 9(18),
p. 3648, 2019.

[2]	 R. Řehůřek, P. Sojka. Software Framework for Topic
Modelling with Large Corpora. Proceedings of the
LREC 2010 Workshop on New Challenges for NLP
Frameworks, Malta, pp. 46–50, 2010.

[3]	 N. Masasi, B. Masua. Common Swahili Stop-Words.
Mendeley Data, 2020.

[4]	 N. Masasi, B. Masua. Common Swahili Slangs.
Mendeley Data, 2020.

[5]	 N. Masasi, B. Masua. Common Swahili Typos.
Mendeley Data, 2020.

[6]	 W. Etaiwi, G. Naymat. The Impact of Applying
Different Preprocessing Steps on Review Spam
Detection. Procedia Computer Science, Vol. 113, pp.
273–279, 2017.

[7]	 M. Ott, C. Cardie, J.T. Hancock. Negative Deceptive
Opinion Spam. Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2013), Atlanta, Georgia,
pp. 497–501, 2013.

[8]	� M. Ott, Y. Choi, C. Cardie, J.T. Hancock. Finding
Deceptive Opinion Spam by Any Stretch of the
Imagination. Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies (ACL
2011), Portland, Oregon, USA, pp. 309–319,
2011.

[9]	� M. Işik, H. Dağ. The Impact of Text Preprocessing on
the Prediction of Review Ratings. Turkish Journal
of Electrical Engineering and Computer Sciences,
Vol. 28(3), pp. 1405–1421, 2020.

[10]	 S. Alam, N. Yao. The Impact of Preprocessing Steps
on the Accuracy of Machine Learning Algorithms
in Sentiment Analysis. Computational and
Mathematical Organization Theory, Vol. 25(3), pp.
319–335, 2019.

[11]	 S. Symeonidis, D. Effrosynidis, A. Arampatzis.
A Comparative Evaluation of Pre-Processing
Techniques and Their Interactions for Twitter
Sentiment Analysis. Expert Systems With
Applications, Vol. 110, pp. 298–310, 2018.

[12]	� N.A. Smith. Contextual Word Representations:
Putting Words Into Computers. Communications
of the ACM, Vol. 63(6), pp. 66–74, 2020.

[13]	� J. Aguilar, C. Salazar, H. Velasco, J. Monsalve-Pulido,
E. Montoya. Comparison and Evaluation of Different
Methods for the Feature Extraction from Educational
Contents. Computation, Vol. 8(2), p. 30, 2020.

[14]	� L. Breiman. Random Forests. Machine Learning,
Vol. 45(1), pp. 5–32, 2001.

[15]	� K. Kirasich, T. Smith, B. Sadler. Random Forest
vs Logistic Regression: Binary Classification for
Heterogeneous Datasets. SMU Data Science Review,
Vol. 1(3), p. 9, 2018.

[16]	 L. Bottou. Large-Scale Machine Learning with
Stochastic Gradient Descent. In: Y. Lechevallier, G.
Saporta (eds.), Proceedings of the 19th International
Conference on Computational Statistics (COMPSTAT
2010, Paris), Physica-Verlag HD, New York, pp. 177–
186, 2010.

[17]	 I. Loshchilov, F. Hutter. SGDR: Stochastic Gradient
Descent with Warm Restarts. Poster at the
5th International Conference on Learning
Representations (ICLR 2017), 2017.

[18]	 J.L. Elman. Finding Structure in Time. Cognitive
Science, Vol. 14(2), pp. 179–211, 1990.

[19]	 H. Jelodar, Y. Wang, R. Orji, S. Huang. Deep Sentiment
Classification and Topic Discovery on Novel
Coronavirus or COVID-19 Online Discussions: NLP
Using LSTM Recurrent Neural Network Approach.
IEEE Journal of Biomedical and Health Informatics,
Vol. 24(10), pp. 2733–2742, 2020.

[20]	 A. Sherstinsky. Fundamentals of Recurrent Neural
Network (RNN) and Long Short-Term Memory
(LSTM) Network. Physica D: Nonlinear Phenomena,
Vol. 404, p. 132306, 2020.

[21]	 C. Cortes, V. Vapnik. Support-Vector Networks.
Machine Learning, Vol. 20(3), pp. 273–297, 1995.

[22]	 D.A. Pisner, D.M. Schnyer. Chapter 6 - Support
Vector Machine. In: A. Mechelli, S. Vieira (eds.),
Machine Learning: Methods and Applications to
Brain Disorders. Academic Press, London, UK, pp.
101–121, 2020.

[23]	 K.M. Ting. Confusion Matrix. In: C. Sammut, G.I.
Webb (eds.), Encyclopedia of Machine Learning and
Data Mining. Springer, Boston, MA, p. 260, 2017.

[24]	� R.G. Mantovani, T. Horváth, R. Cerri, J. Vanschoren,
A.C.P.L.F. de Carvalho. Hyper-Parameter Tuning of
a Decision Tree Induction Algorithm. Proceedings
of the 5th Brazilian Conference on Intelligent
Systems (BRACIS 2016), Recife, Brazil, pp. 37–42,
2016.

[25]	� R.G. Mantovani, A.L.D. Rossi, J. Vanschoren, B.
Bischl, A.C.P.L.F. de Carvalho. Effectiveness of
Random Search in SVM Hyper-Parameter Tuning.
Proceedings of the 2015 International Joint
Conference on Neural Networks (IJCNN), Killarney,
Ireland, pp. 1–8, 2015.

https://doi.org/10.3390/app9183648
https://doi.org/10.3390/app9183648
https://doi.org/10.3390/app9183648
https://doi.org/10.3390/app9183648
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.17632/mmf4hnsm2n.1
https://doi.org/10.17632/mmf4hnsm2n.1
https://doi.org/10.17632/b8tc96xf3h.1
https://doi.org/10.17632/b8tc96xf3h.1
https://doi.org/10.17632/3xmsjhdrc9.1
https://doi.org/10.17632/3xmsjhdrc9.1
https://doi.org/10.1016/j.procs.2017.08.368
https://doi.org/10.1016/j.procs.2017.08.368
https://doi.org/10.1016/j.procs.2017.08.368
https://doi.org/10.1016/j.procs.2017.08.368
https://doi.org/10.3906/elk-1907-46
https://doi.org/10.3906/elk-1907-46
https://doi.org/10.3906/elk-1907-46
https://doi.org/10.3906/elk-1907-46
https://doi.org/10.1007/s10588-018-9266-8
https://doi.org/10.1007/s10588-018-9266-8
https://doi.org/10.1007/s10588-018-9266-8
https://doi.org/10.1007/s10588-018-9266-8
https://doi.org/10.1007/s10588-018-9266-8
https://doi.org/10.1016/j.eswa.2018.06.022
https://doi.org/10.1016/j.eswa.2018.06.022
https://doi.org/10.1016/j.eswa.2018.06.022
https://doi.org/10.1016/j.eswa.2018.06.022
https://doi.org/10.1016/j.eswa.2018.06.022
https://doi.org/10.1145/3347145
https://doi.org/10.1145/3347145
https://doi.org/10.1145/3347145
https://doi.org/10.3390/COMPUTATION8020030
https://doi.org/10.3390/COMPUTATION8020030
https://doi.org/10.3390/COMPUTATION8020030
https://doi.org/10.3390/COMPUTATION8020030
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1109/JBHI.2020.3001216
https://doi.org/10.1109/JBHI.2020.3001216
https://doi.org/10.1109/JBHI.2020.3001216
https://doi.org/10.1109/JBHI.2020.3001216
https://doi.org/10.1109/JBHI.2020.3001216
https://doi.org/10.1109/JBHI.2020.3001216
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1016/B978-0-12-815739-8.00006-7
https://doi.org/10.1007/978-1-4899-7687-1_50
https://doi.org/10.1007/978-1-4899-7687-1_50
https://doi.org/10.1007/978-1-4899-7687-1_50
https://doi.org/10.1109/BRACIS.2016.018
https://doi.org/10.1109/BRACIS.2016.018
https://doi.org/10.1109/BRACIS.2016.018
https://doi.org/10.1109/BRACIS.2016.018
https://doi.org/10.1109/BRACIS.2016.018
https://doi.org/10.1109/BRACIS.2016.018
https://doi.org/10.1109/IJCNN.2015.7280664
https://doi.org/10.1109/IJCNN.2015.7280664
https://doi.org/10.1109/IJCNN.2015.7280664
https://doi.org/10.1109/IJCNN.2015.7280664
https://doi.org/10.1109/IJCNN.2015.7280664
https://doi.org/10.1109/IJCNN.2015.7280664

13B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

[26]	� P. Lameski, E. Zdravevski, R. Mingov, A. Kulakov.
SVM Parameter Tuning with Grid Search and Its
Impact on Reduction of Model Over-Fitting. In:
Y. Yao, Q. Hu, H. Yu, J.W. Grzymala-Busse (eds.),
Proceedings of the 15th International Conference
on Rough Sets, Fuzzy Sets, Data Mining, and

Granular Computing (RSFDGrC 2015). Lecture
Notes in Computer Science, Springer, Cham, Vol.
9437, pp. 464–474, 2015.

[27]	� B. Masua, N. Masasi. GitHub Repository. 2021.
Available Online: https://github.com/LeoVinciTZ/
Swahili-NLP/tree/master/Text Classification/Models.

https://doi.org/10.1007/978-3-319-25783-9_41
https://doi.org/10.1007/978-3-319-25783-9_41
https://doi.org/10.1007/978-3-319-25783-9_41
https://doi.org/10.1007/978-3-319-25783-9_41
https://doi.org/10.1007/978-3-319-25783-9_41
https://doi.org/10.1007/978-3-319-25783-9_41
https://doi.org/10.1007/978-3-319-25783-9_41
https://doi.org/10.1007/978-3-319-25783-9_41
https://doi.org/10.1007/978-3-319-25783-9_41
https://github.com/LeoVinciTZ/Swahili-NLP/tree/master/Text%20Classification/Models
https://github.com/LeoVinciTZ/Swahili-NLP/tree/master/Text%20Classification/Models

