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ABSTRACT

Data pre-processing is an important step in machine learning text classification as it improves 
data quality and hence improves performance of trained algorithms. We experimentally compare 
the following pre-processing techniques: punctuation removal, lowercasing, typos replacement, 
slang replacement and stop-word removal on a Swahili short message service (SMS) dataset for 
topic classification. Different machine learning algorithms are applied such as Random Forest, 
Stochastic Gradient Descent, RNN LSTM Unidirectional, RNN LSTM Bidirectional and Support 
Vector Machine. We analyze the impact of the pre-processing techniques on classification accuracy 
and f1-score. Our experiments show that all pre-processing steps, when applied separately, 
have a positive impact on the performance of all evaluated classification algorithms. Among all 
experimented pre-processing steps, stop-word removal has the highest impact on performance 
of both accuracy and f1-score metrics. Also, of all evaluated algorithms, Random Forest and 
Stochastic Gradient Descent are the most positively affected with pre-processing steps.
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1.  INTRODUCTION

Natural Language Processing (NLP) is a field of Artificial 
Intelligence that gives machines the ability to read, 
understand and derive meaning from human languages. 
Swahili is a language spoken by the majority in East and 
Central Africa. However, Swahili is considered as a low 
recourse language and there is not enough research on 
machine learning techniques that utilize textual data 
based on the Swahili language. Any language's basic 
sentence structure employs both a subject-verb (SV) and 
a subject-verb-object (SVO) formula. But they differ when 
a sentence gets more complex, even for some relatively 
simple sentences. Language structure differs on word 

order, use of unique words, time and environment. 
Swahili is distinguished from other languages by its 
basic syllable structure, which includes no consonant 
clusters, no final consonants and the addition of a vowel 
to loanwords that finish in a consonant [1]. This article 
uses a Swahili dataset collected from SMS platforms on 
different topics ranging from education, nutrition, health 
and corona, among others. As the number of collected 
messages increases there is a need to automatically 
classify each incoming message into its corresponding 
topic category.

SMS platforms are used to collect opinions that can be 
used to generate insights on different matters. As people 
express their views and opinions on certain things, they 
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usually send SMS messages that contain significant 
amounts of noise. We define noise as data that do not 
contain any useful information for the analysis at hand and 
that mislead machine learning algorithms into incorrect 
decisions. Noise can be punctuations, stop words, spelling 
and typos, slang and non-alphabetic characters which 
affect data quality. Data quality is a feature enhanced 
through a series of data pre-processing steps. Data pre-
processing is critical in preparing Swahili textual data 
for NLP classification tasks. It can improve the accuracy 
and efficiency of the classification model, while also 
making it easier to analyze the textual data and extract 
meaningful insights. Hence, the following pre-processing 
steps should be considered: removing punctuations and 
other non-alphabetic characters, converting all text into 
lower case, replacing common typos with proper words, 
replacing common Swahili slang with proper words, 
and removing stop words. These steps were applied 
separately and then each algorithm was re-trained and 
re-evaluated to assess the effects.

The purpose of this study is to assess common pre-
processing techniques from previous studies and to 
evaluate their impact on the performance of classification 
algorithms. Accuracy and F1 score metrics are used 
to evaluate the performance of algorithms. Document 
to Vector (Doc2Vec) [2] is used as a feature extraction 
approach for all algorithms implemented in this study. 
Fine-tuned models of each algorithm are used as a base 
to compare the impact of each pre-processing step. The 
contributions of this article are as follows:

1.		 The study contributes to the body of knowledge that, 
among all evaluated algorithms, Random Forest (RF) 
and Stochastic Gradient Descent (SGD) are more 
affected by pre-processing steps on Swahili textual 
data, whereas LSTM Unidirectional and Support 
Vector Machine (SVM) are less affected by these pre-
processing steps.

2.		 All pre-processing steps tested show a positive 
impact on the performance of the evaluated 
classifiers, but a higher impact was observed when 
stop words were removed from the Swahili textual 
data. Hence this should always be considered during 
pre-processing.

3.		 Research developed and contributed common 
Swahili Stop Words dataset containing 254 unique 
words [3], common Swahili Slangs dataset containing 
234 words for slang and their respective Swahili 
proper words [4] and common Swahili Typos dataset 
containing 431 misspelled words their respective 
Swahili proper words [5].

The organization of this paper is as follows. Section 2  
reviews some of the related literature. In Section 3, 
experiments are discussed in terms of the dataset 
used, the pre-processing methods, the feature selection 
approach, the classification algorithms and the 

evaluation metrics deployed. Section 4 discusses the 
findings and the results. The conclusions are detailed in 
Section 5, followed by compliance statements and the 
list of references.

2.  RELATED WORKS

Etaiwi et al. [6] evaluated the impact of applying different 
pre-processing steps on review spam detection. Among 
the steps used were Part-of-Speech (POS) tagging, 
n-gram term frequencies, stemming, and stop word and 
punctuation marks filtering. The study used a dataset 
proposed in [7,8] consisting of about 1600 reviews. The 
authors compared truthful and deceptive positive and 
negative reviews for hotels found on the TripAdvisor 
website. The authors observed that these steps affect 
the overall accuracy of the review spam detection task 
which was carried out by training and evaluating the 
performance of the Naïve Bayes (NB), Support Vector 
Machines (SVM), Decision Tree, Random Forest (RF) 
and Gradient Boosted Trees algorithms. Results showed 
that each different pre-processing step may have a 
positive or a negative impact on the performance of 
each algorithm. However, the authors did not consider 
replacing common slang and typos with proper words, 
although these two steps depend on the content and 
source of the dataset used.

A paper written by Işik et al. [9] about the impact of text 
pre-processing on the prediction of review ratings by 
using the K-Nearest Neighbors (KNN), Decision Tree (DT), 
Random Forest (RF), Logistic Regression (LR), Stochastic 
Gradients Descent (SGD), Naïve Bayes Classifier (NB) 
and Support Vector Machine (SVM) classifiers of the 
Natural Language Toolkit (NLTK) to get accuracy results 
for all types of pre-processing methods. The study used 
a real e-commerce dataset extracted from Yelp in June 
2018 consisting of 10,000 restaurant reviews aiming 
to analyze the effects of pre-processing methods when 
finding the star ratings of restaurants by analyzing the 
reviews. The study highlights that text pre-processing 
has a remarkable impact on the performance of 
classifiers. Some pre-processing methods have a positive 
or a negative effect on the classification accuracy, while 
others have a neutral effect. Also, the order of applying 
the pre-processing methods matters. The authors did 
not consider replacing common slang with proper words 
as one of the text pre-processing steps.

In [10] the impact of pre-processing steps on the accuracy 
of machine learning algorithms in sentiment analysis was 
evaluated by using a dataset extracted from the Twitter 
API with the KNIME tool that filtered only tweets written 
in the English language. For the sentiment analysis task, 
SVM, NB and Maximum Entropy (MaxE) algorithms were 
used. The results illustrated that the accuracy of models 
generated by the SVM and NB algorithms was improved 
positively, while that of MaxE remained constant after 



3B. Masua et al. / Natural Language Processing Research / Volume 3, Issue 1–2, December 2023, Pages 1–13

applying pre-processing steps. This article calculated the 
accuracy of the three machine learning algorithms before 
and after applying the pre-processing steps without 
considering each step separately to evaluate its effect on 
the trained algorithm performance.

3.  MATERIALS, THEORY AND METHODS

This section contains a brief discussion on the dataset 
used for the evaluation, the pre-processing steps, the 
feature selection approach, the classification algorithms 
and the evaluation measures employed within this study.

3.1.  Dataset

The Swahili textual data used in this study consist of 
short text messages received on U-Report Tanzania. 
U-Report has over 22 million subscribers worldwide 
and over 170,000 subscribers in Tanzania, and is a global 
platform that allows young people to express their views 
on topics across various fields such as Health, Education, 
Menstrual Hygiene, Corona, WASH, Nutrition, HIV and 
Violence against Children. The dataset contains 64,390 
rows and 3 columns which are Topic Number, Topic 
Name and Text.

Datasets were split in a ratio of 75% by 25% for training 
and testing respectively. To ensure that the training 
dataset included all possible patterns used for defining 
the problem and extended to the edge of the modeling 
domain, we first generated data frames for each class of 
text, then split each class using the Sklearn function by 
a 75:25 ratio with enabled random state and combined 
the resulting outputs to form the training dataset and 
testing dataset. Table 1 shows the number of sentences 
or rows each topic contributes to the labeled dataset. 
Fig. 1 shows the percentage contribution of each topic in 
rows of the labeled dataset.

3.2.  Pre-Processing Methods

NLP pre-processing steps vary depending on the nature 
of the data and the intended machine learning task. 
This study uses a Swahili dataset collected from youth 
through an SMS platform with the task of categorizing 
each SMS into an identified topic category. The following 
pre-processing steps were considered to prepare the 
dataset for training and testing classification algorithms.

3.2.1. � Removing Punctuations and Other  
Non-Alphabetic Characters

Punctuations are noisy data which may mislead trained 
algorithms to make wrong decisions during topic 
classification. Hence punctuations should be removed 
during data pre-processing [11]. Also, removing 

punctuations and non-alphabetic characters will provide 
relief to processors during training and reduce the 
overall processing time and resources.

3.2.2.  Converting Text to Lowercase

Uppercase and lowercase characters or words are treated 
differently by computers. Hence the same words or 
characters with different cases will be assigned different 
vectors during the vectorization step. By doing so, the 
same words are merged to have clean token information 
and reduce dimensionality. This is performed at an early 
stage of pre-processing, to help other pre-processing 
stages perform well and to reduce the effect of missing 
the word with letters written in different cases.

3.2.3.  Replacing Common Typos

The same words with slightly different spelling are 
treated differently by computers and are therefore 
assigned different vectors during the vectorization step. 
Performing spelling corrections allows the same words 
to be merged to have clean token information and reduce 
dimensionality. This study applies a typos dataset from 
[5] to replace misspelled Swahili words with proper 
words.

Corona
21%

Education
26%

HIV Aids
8%

Health
7%

Menstrual 
Hygiene

6%

Nutrition
8%

Others
3%

U-Report
7%

Violence Against 
Children (VAC)

11%

WASH
3%

Topic Labeled Statistic Graph 

Figure 1.  Dataset topic labeled in percentages.

Topic Name Topic Text

Corona 9 13,832

Education 3 16,682

HIV AIDS 4 4,829

Health 1 4,197

Menstrual Hygiene 7 3,768

Nutrition 2 4,984

Others 8 2,039

U-Report 10 4,758

Violence Against Children (VAC) 5 7,369

WASH 6 1,932

Table 1.  Topics labeled statistic.
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3.2.4.  Replacing Common Swahili Slang

Words that are regarded as very informal are known 
as slang. Slang depends on location, on particular 
context or on groups of people and is treated differently 
by computers and thus assigned different vectors during 
the vectorization step. Performing replacement of slang 
means that words with similar meaning are merged to 
have clean token information and reduce dimensionality. 
This study applies a slang dataset from [4] to replace 
slang with proper words.

3.2.5.  Removing Stop Words

The common Swahili stop words dataset from [3] consists 
of a list of words which do not add much meaning to a 
sentence. Hence these can be ignored without sacrificing 
the meaning of sentences. Stop words are removed 
because they do not contribute to finding the context 
or true meaning of a sentence. Removing stop words 
reduces dimensionality during training and provides 
relief to processors, hence reducing overall training time.

3.3.  Text Representation Techniques

Text features can be extracted by using different methods. 
This study uses Doc2Vec [2], also known as Para2Vec, 
which is an NLP technique used to represent documents 
as a vector and is a generalization of the Word2Vec 
method. Doc2Vec creates a numeric representation of a 
document like a sentence or a paragraph, regardless of its 
length. Documents, unlike words, do not come in logical 
structures. So instead of using the Word2Vec approach, 
another vector was added to represent a paragraph or 
sentence [12].

To generate a predictive model, this technique creates 
a distributed semantic representation of words in the 
document that is trained in the context of each word. It 
learns how to connect documents and words by learning 
a conceptual representation of a document from a Swahili 
corpus of documents. In a process of vectorizing Swahili 

paragraphs/sentences, every paragraph/sentence is 
mapped to a unique vector. During training, the model 
learns vectors which are a semantic representation of the 
documents. To represent each document, the paragraph 
and word vectors are averaged or concatenated to 
predict the next word in context [13]. The averaged or 
concatenated vectors of paragraphs/sentences are used 
to build the vocabulary from a sequence of sentences. 
This represents the vocabulary of the model which keeps 
track of all unique Swahili words.

After training, the model is inspected to ensure that it 
learned all the words and their contextual meaning. 
Validation is done by generating most similar words 
using the most_similar function in the Gensim library. 
When a word is passed, the model lists all words in the 
document which contextually resemble the passed word 
as illustrated in Table 2.

3.4.  Classification Algorithms

The scope of this research involves checking the impact 
of pre-processing techniques on the performance of 
the following classification algorithms: Random Forest, 
Stochastic Gradient Descent, RNN LSTM Unidirectional, 
RNN LSTM Bidirectional and Support Vector Machine.

3.4.1.  Random Forest

Random Forest (RF) [14], as its name implies, consists of a 
large number of individual decision trees that operate as an 
ensemble. Each individual tree in the random forest spits 
out a class prediction and the class with the most votes 
becomes the model’s prediction. The trees in RF protect 
each other from their individual errors: while some trees 
may be wrong, many other trees will be right, so as a group 
the trees are able to move in the correct direction [15].

3.4.2.  Stochastic Gradient Descent (SGD)

Gradient Descent [16] is an iterative algorithm that starts 
from a random point on a function and travels down its 

S/No. Word Near/Similar Word With Weight

1 ajira [('mikopo', 0.6587635278701782), ('mitaji', 0.6048551797866821), ('pensheni', 0.5972285270690918), ('motisha',  
0.5750974416732788), ('leseni', 0.5745390057563782), ('huduma', 0.5536848902702332), ('nguvukazi', 
0.5497235059738159), ('uwakilishi', 0.5494844913482666), ('raslimali', 0.5410809516906738), ('mapato', 
0.5391908884048462)]

2 kuajiriwa [('kuandikishwa', 0.6560262441635132), ('kustaafu', 0.6464136838912964), ('kuwaajiri', 0.6243953704833984),  
('kuajiri', 0.6227836608886719), ('kujisajili', 0.6226930618286133), ('kujiendeleza', 0.6165447235107422),  
('kujiandikisha', 0.6145368814468384), ('kuhitimu', 0.601360023021698), ('kusajiliwa', 0.5967570543289185),  
('kujiajiri', 0.585351288318634)]

3 kujiajiri [('wajiajiri', 0.6244261264801025), ('kujiari', 0.60692298412323), ('kulima', 0.5857206583023071), ('kuajiriwa', 
0.585351288318634), ('kujitegemea', 0.5762639045715332), ('mitaji', 0.5622026920318604), ('kujiendeleza', 
0.559045135974884), ('kujihudumia', 0.5459901690483093), ('kimtaji', 0.5443302392959595), ('kuviendesha', 
0.5207050442695618)]

Table 2.  Top-10 similar/related words.
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slope in steps until it reaches the lowest point of that 
function. SGD randomly picks one data point from the 
whole data set at each iteration to significantly reduce 
the computations [17].

3.4.3.  RNN

Recurrent Neural Network (RNN) [18] is a 
generalization of feedforward neural network that has 
an internal memory. RNN is recurrent in nature since it 
executes the same function for each data input, and the 
current input's outcome is dependent on the previous 
computation. RNN algorithms are included in this study 
because they are important and powerful in most NLP 
works. RNNs are designed to use sequential data, and 
the result is enhanced by storing past calculations. 
RNNs have a memory function that preserves previously 
calculated information. RNNs with LSTM units have the 
advantage of being able to learn long-term dependencies 
by altering the information in a cell state using three 
separate gates [19].

Bidirectional and Unidirectional RNN LSTM are the two 
forms of RNN LSTM used in this study. Bidirectional 
LSTM will handle generated Swahili text vectors as 
inputs in two ways: from the past to the future and from 
the future to the past. Bidirectional LSTM differs from 
unidirectional in that it uses LSTM that runs backward to 
preserve information from the future, and by combining 
the two hidden states, it can maintain information from 
both the past and the future at any point in time [20].

3.4.4.  Support Vector Machine

The objective of the Support Vector Machine algorithm 
[21] in this research is to find a hyperplane in an 
N-dimensional space, where N is the number of features 
from Swahili text vectors that distinctly classifies the 
data points into mentioned topics. Hyperplanes are 
decision boundaries that help classify the data points. 
Data points falling on either side of the hyperplane can 
be attributed to different topics. Also, the dimension of 
the hyperplane depends upon the number of features. 
In this study the number of input features is 10, so the 
hyperplanes generated to distinguish 10 topics are just  
9 lines. To separate classes of data points, there are many 
possible hyperplanes that could be chosen. The objective 
is to find a plane that has the maximum distance between 
data points of both classes. Maximizing the margin 
distance provides some reinforcement so that future text 
data points can be classified with more confidence [22].

3.5.  Evaluation Metrics

For performance evaluation, we use accuracy and 
F-Measure (f-score) since f-score measures recall and 
precision at the same time. In order to have a testing 
dataset, the dataset is split into training and testing sets 

with a ratio of 3:1 respectively. The dataset splitting 
process was done with the consideration that each topic 
must be in both sets with the same ratio of 3:1. This 
will reduce the chance of overfitting and underfitting 
that may occur when using a random split method. The 
Swahili testing dataset was generated with 25 percent 
of about 16,098 sentences from each topic and was used 
for testing each generated Swahili model. The equation 
for calculating the f-score is [23]:

F measure Recall Precision
Recall Precision

- =
+

2* *

where

Recall TP
TP FN

TP
TP FP

=
+

=
+

and Precision

and the equation for calculating accuracy is:

Accuracy TP TN
TP TN FP FN

=
+

+ + +

True Positive (TP): the model predicted positive and it 
is true.
True Negative (TN): the model predicted negative and it 
is true.
False Positive (FP) (Type 1 Error): the model predicted 
positive and it is false.
False Negative (FN) (Type 2 Error): the model predicted 
negative and it is false [23].

3.6.  Hyper-Parameters Tuning

Hyper-parameters are those parameters that are not 
altered during the learning process. Parameter tuning is 
used to configure a model or algorithm while decreasing 
the cost function. This is simply an optimization loop built 
on top of a machine learning model learning to discover 
the set of hyper-parameters that lead to the lowest error 
on the validation set in the tuning process. There are 
three different types of hyper-parameter optimization 
algorithms: comprehensive space search that includes all 
available search options, surrogate models that predict 
the local lowest validation loss when hyper-parameters 
are fitted on earlier trials, and the third category which 
combines the two previous ideas [24].

In this study, we employ the first category to fine-tune 
parameters on algorithms by combining two hyper-
parameter optimizer techniques: Random Search and 
Grid Search. Random Search is a type of hyper-parameter 
optimization algorithm used in space category exhaustive 
search that randomly samples the search space rather 
than discretizing it with a cartesian grid. It has a time 
budget in the sense that the number of trials to end the 
search must be defined [25]. Grid Search is a type of 
hyper-parameter optimization algorithm used in space 
category exhaustive search, where the complete search 
space is discretized as the cartesian product of each 
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hyper-parameter. The algorithm then performs parallel 
learning for each of the hyper-parameter combinations, 
evaluates their performance and chooses the best one 
[26]. Table 3 shows fixed tuned parameters for each 
algorithm which are later used in the study to observe 
the impact of Swahili text pre-processing on machine 
learning classification of topics.

4.  RESULTS AND DISCUSSION

In the experimentation phase, Doc2Vec is implemented 
using Sklearn and is used to extract features for all 
classification algorithms. The Random Search method 
is used to determine a set of optimal hyper-parameters. 
Then, the generated set of parameters is used as input 
for the Grid Search method to obtain hyper-parameters 
with the lowest validation errors. This process is done 
to reduce computational resources and the curse of 
dimensionality. Table 4 shows improvements in accuracy 
and f1-score after parameter fine-tuning. Swahili models 
generated from this study can be accessed through a 
GitHub repository [27].

4.1.  Pre-Processed Dataset Analysis

First each pre-processing step on the dataset was 
performed separately and later on the combination of 
steps was done all together. The total number of words 
in the dataset was 94,153 with 606,009 characters. The 
punctuation removal step affects 0.63% of all characters 
present in the dataset which is equal to 3,814 characters. 

With the typos correction step 650 words were affected 
which is equal to 0.69%. For slang correction 0.05% of 
words, which is equal to 47 words, were affected. Stop 
word removal affected 15.67% of words which is equal 
to 14,754 words. Also, after performing all the steps, 
25,831 words which is equal to 27.44% of all the words, 
and 92,897 characters which is equal to 15.31% of all the 
characters, were affected.

4.2.  Effect of Fine-Tuning

By using the Doc2Vec text representation technique, 
experiments show that without hyper-parameter 
fine-tuning, the model generated by the RNN LSTM 
Unidirectional algorithm outperforms other algorithms 
and registers an accuracy of 79.33% and f1-score of 
80.26%. After making improvements to the model by 
fine-tuning, the RNN LSTM Unidirectional model still 
outperforms other models with an accuracy of 81.50% 
and f1-score of 82.47%. The improvements by fine-
tuning vary from model to model with SVM registering 
the highest improvement in both accuracy and f1 score 
by 20.57% and 17.94% respectively, as shown in Table 4. 
When employing Swahili textual data, the fine-tuning 
process has the greatest beneficial impact on accuracy 
and f-score for all models.

4.3.  Effect of Removing Punctuations

Table 5 shows the results obtained after removing 
punctuations which are ! ” # $ % ′ ( ) *+ , − . / : ; < = > ?  

S/No. Algorithm Parameters

1 SGD alpha = 0.001, loss = 'hinge', max_iter = 100, random_state = 42, tol = None

2 SVM C = 1.2, kernel = 'rbf', probability = True, random_state = 0

3 RF min_samples_split = 5, criterion = 'gini', n_estimators = 10000, n_jobs = –1, random_state = 0

4 RNN LSTM Uni Max_NB_Words = 100000, Max_Sequence_Length = 950, Embedding_Dimension = 300, LSTM  
(100, SpatialDropout = 0.2, recurrent_dropout = 0.2), Dense = 10, activation = 'softmax', loss =  
'categorical_crossentropy', optimizer = 'adam'

5 RNN LSTM Bi Max_NB_Words = 100000, Max_Sequence_Length = 950, Embedding_Dimension = 300,  
Bidirectional (LSTM (100, return_sequences = True, dropout = 0.50), merge_mode = 'concat'),  
Dense = 100, activation = 'softmax', loss = ' sparse_categorical_crossentropy, optimizer = 'adam'

Table 3.  Tuned parameters for classification algorithms.

Algorithm Accuracy without 
fine-tuning

F1-score without 
fine-tuning

Accuracy with 
fine-tuning

F1-score with 
fine-tuning

Accuracy 
improvement after 

fine-tuning (%)

F1-score 
improvement after 

fine-tuning (%)

SGD 0.6672 0.6577 0.7654 0.7733 14.72 17.58

SVM 0.6553 0.6733 0.7901 0.7941 20.57 17.94

RF 0.5814 0.6336 0.6846 0.7193 17.75 13.53

LSTM Uni 0.7933 0.8026 0.8150 0.8247 2.74 2.75

LSTM Bi 0.7756 0.7818 0.8070 0.8024 4.05 2.63

Table 4.  Improvements made to the model by fine-tuning.
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@ [ \ ] _‘ { | } and are 0.63% of all characters in the 
dataset. Results show that punctuations removal has 
a positive effect on the accuracy and f-score for all the 
trained models. The improvements vary from model to 
model with SGD registering the highest improvement 
in accuracy of 1.33% and LSTM Bi achieving the highest 
improvement in f1-score of 0.86%.

4.4.  Effect of Lowercasing

Table 6 shows the results obtained after changing 
all characters to lowercase. 14.31% of all words are 
affected by this step, which leads to a reduction in 
the number of vectors generated during vectorization 
since both lowercase and uppercase characters in the 
same words are mapped to a single vector. Results 
show that lowercasing has a positive effect on the 
accuracy and f-score for all the trained models. The 
improvements vary from model to model with SGD 
registering the highest improvement in accuracy of 

2.48% and RF achieving the highest improvement in 
f1-score of 1.65%.

4.5. � Effect of Replacing Typos  
With Proper Words

Table 7 shows the results obtained after replacing common 
Swahili typos with proper Swahili words. According to 
the dataset used the word “maswali” can be commonly 
misspelled and written in four different ways which are 
“maswal”, “maswar”, “maxwal” and “maxwali”. Without 
replacing typos, all these five words will be represented 
with five different vectors. So correcting typos leads to 
a reduction in the number of vectors generated during 
vectorization and 0.69% of words are affected by this step. 
Results show that replacing typos with proper words has 
a positive effect on the accuracy and f-score for all the 
trained models. The improvements vary from model to 
model with SGD registering the highest improvement in 
accuracy and f1-score of 3.23% and 2.66% respectively.

Algorithm
Without Pre-Processing Punctuations Removal Accuracy 

improvement (%) 
F1-score 

improvement (%)Accuracy F1-score Accuracy F1-score 

SGD 0.7654 0.7733 0.7756 0.7791 1.33 0.75

SVM 0.7901 0.7941 0.7982 0.7994 1.03 0.67

RF 0.6846 0.7193 0.6864 0.7211 0.26 0.25

LSTM Uni 0.8150 0.8247 0.8161 0.8267 0.13 0.24

LSTM Bi 0.8070 0.8024 0.8089 0.8093 0.24 0.86

Table 5.  Results after removing punctuations.

Algorithm
Without Pre-Processing Lowercasing Accuracy 

improvement (%)
F1-score 

improvement (%)Accuracy F1-score Accuracy F1-score 

SGD 0.7654 0.7733 0.7844 0.7801 2.48 0.88

SVM 0.7901 0.7941 0.7996 0.8012 1.20 0.89

RF 0.6846 0.7193 0.6923 0.7312 1.12 1.65

LSTM Uni 0.8150 0.8247 0.8187 0.8275 0.45 0.34

LSTM Bi 0.8070 0.8024 0.8110 0.8133 0.50 1.36

Table 6.  Results after lowercasing.

Algorithm
Without Pre-Processing Spelling Corrections Accuracy 

improvement (%)
F1-score 

improvement (%)Accuracy F1-score Accuracy F1-score 

SGD 0.7654 0.7733 0.7901 0.7939 3.23 2.66

SVM 0.7901 0.7941 0.7983 0.8051 1.04 1.39

RF 0.6846 0.7193 0.6983 0.7382 2.00 2.63

LSTM Uni 0.8150 0.8247 0.8193 0.8289 0.53 0.51

LSTM Bi 0.8070 0.8024 0.8188 0.8152 1.46 1.60

Table 7.  Results after spelling corrections.
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4.6. � Effect of Replacing Slang  
With Proper Words

Table 8 shows the results obtained after replacing 
common Swahili slang with proper Swahili words. The 
Swahili dataset used show that the word “mvulana” can 
be commonly written in five different ways which are 
“aguy”, “chali”, “jamaa”, “mhi” and “kijanaa”. Without 
replacing slang, all these six words will be represented 
with six different vectors. So correcting slang leads to 
a reduction in the number of vectors generated during 
vectorization and 0.05% of words are affected by this 
step. Results show that replacing slang with proper words 
has a positive effect on the accuracy and f-score for all 
the trained models. The improvements vary from model 
to model with SGD registering the highest improvement 
in accuracy of 2.05% and LSTM Bi achieving the highest 
improvement in f1-score of 2.23%.

4.7.  Effect of Removing Stop Words

Table 9 shows the results obtained after removing 
common Swahili stop words. 15.67% of all words are 

affected by this step, which leads to a reduction in the 
number of vectors to be used during training, hence 
improving the overall performance. Results show 
that removing stop words has a positive effect on the 
accuracy and f-score for all the trained models. The 
improvements vary from model to model with SGD 
and RF registering the highest improvements in both 
accuracy and f1-score. The highest improvement in 
accuracy is attained by SGD with 6.62%, followed by 
RF with 6.38%, whereas the highest improvement in 
f1-score is attained by RF with 8.19%, followed by SGD 
with 6.01%.

4.8. � Effect of Performing All  
Pre-Processing Steps

Table 10 shows the results obtained after performing 
all the pre-processing steps, starting with removing 
punctuations, then lowercasing, then replacing typos 
with proper Swahili words, then replacing slang with 
proper Swahili words, and finally removing common 
Swahili stop words. Results show that performing 
data pre-processing in that order has a positive effect 

Algorithm
Without Pre-Processing Slang Correction Accuracy 

improvement (%)
F1-score 

improvement (%)Accuracy F1-score Accuracy F1-score 

SGD 0.7654 0.7733 0.7811 0.7861 2.05 1.66

SVM 0.7901 0.7941 0.8022 0.8085 1.53 1.81

RF 0.6846 0.7193 0.6971 0.7342 1.83 2.07

LSTM Uni 0.8150 0.8247 0.8156 0.8255 0.07 0.10

LSTM Bi 0.8070 0.8024 0.8189 0.8203 1.47 2.23

Table 8.  Results after correcting slang.

Algorithm
Without Pre-Processing Stop Word Removal Accuracy 

improvement (%)
F1-score 

improvement (%)Accuracy F1-score Accuracy F1-score

SGD 0.7654 0.7733 0.8161 0.8198 6.62 6.01

SVM 0.7901 0.7941 0.8183 0.8251 3.57 3.90

RF 0.6846 0.7193 0.7283 0.7782 6.38 8.19

LSTM Uni 0.8150 0.8247 0.8332 0.8414 2.23 2.02

LSTM Bi 0.8070 0.8024 0.8275 0.8287 2.54 3.28

Table 9.  Results after removing Swahili stop words.

Algorithm
Without Pre-Processing Performing All Steps Accuracy 

improvement (%)
F1-score 

improvement (%)Accuracy F1-score Accuracy F1-score 

SGD 0.7654 0.7733 0.8188 0.8218 6.98 6.27

SVM 0.7901 0.7941 0.8192 0.8284 3.68 4.32

RF 0.6846 0.7193 0.7363 0.7889 7.55 9.68

LSTM Uni 0.8150 0.8247 0.8379 0.8476 2.77 2.78

LSTM Bi 0.8070 0.8024 0.8363 0.8375 3.63 4.37

Table 10.  Results after performing all pre-processing steps.
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4.10. � Visual Comparison of the Impact  
of Pre-Processing

Fig. 3 and Fig. 4 show a visual comparison of the accuracy 
and f1-score improvement in percentages for each of 
the tested algorithms. The graphs show a positive effect 
for all the models. Generally, RF and SGD are highly 
affected, while LSTM-Uni and SVM are the least affected 
by pre-processing for both accuracy and f1-score. The 
pre-processing step of removing stop words has the 
most impact on both accuracy and f1-score.

4.11. � Average Performance of  
the Tested Models

Table 11 shows the average performance of the tested 
algorithms in terms of accuracy and f1-score. Generally, 
we obtain the highest average accuracy and f1-score 
for LSTM-Uni with 82.35% and 83.29% respectively, 
followed by LSTM-Bi with an accuracy of 82.02% and 

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

F1-Score Improvements 
in Percentages

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Accuracy Improvements 
in Percentages

Figure 2.  Average model improvements on the performance after applying all pre-processing steps.

on the accuracy and f-score for all the trained models. 
The improvements vary from model to model with RF 
registering the highest improvement in accuracy and 
f1-score of 7.55% and 9.68% respectively. Note that this 
is the highest improvement as compared to the previous 
results which only showed improvements after applying 
one of the steps.

4.9. � Visual Comparison of Average  
Performance Impact

Fig. 2 shows a visual comparison of performance 
improvements in percentages of the f1-score and 
accuracy by using Doc2Vec as the text representation 
technique. The graphs show that all the tested algorithms 
are positively affected by the application of pre-
processing steps. Generally, the highest average impact 
for the experimented pre-processing steps is attained 
by RF followed by SGD for both accuracy and f1-score 
metrics.

0.00
1.00
2.00
3.00
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5.00
6.00
7.00
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Punctuations
Removal

Lowercasing Typos
Corrections

Slang Correction Stop-word
Removal
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Figure 3.  Accuracy improvements from each pre-processing step for the tested models.
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Figure 5.  Accuracy improvements after combining the pre-processing steps sequentially.

Algorithm Average Accuracy  
Performance

Average F1-Score  
Performance

SGD 0.7944 0.7968

SVM 0.8060 0.8113

RF 0.7065 0.7486

LSTM-Uni 0.8235 0.8329

LSTM-Bi 0.8202 0.8207

Table 11.  Average performance of the tested models.

0.00
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4.00
6.00
8.00

10.00
12.00

Punctuations
Removal

Lowercasing Typos
Corrections

Slang
Correction

Stop-word
Removal
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F1-Score Improvements in Percentages

SGD SVM RF LSTM-Uni LSTM-Bi

Figure 4.  F1-score improvements from each pre-processing step for the tested models.

f1-score of 82.07% when hyper-parameter tuning is 
used as a baseline.

4.12. � Sequential Improvements of  
Accuracy and F1-Score

Fig. 5 and Fig. 6 show the sequential improvements 
of the accuracy and f1-score for each of the tested 
algorithms after combining the pre-processing steps 
in the sequence: 1 = hyper-parameter fine-tuning, 2 = 
removing punctuations, 3 = lowercasing, 4 = correcting 
typos, 5 = correcting slang, 6 = removing stop words. 
The graphs show a positive effect for all the tested 
models with the applied pre-processing sequence. The 
hyper-parameter fine-tuning step has the most impact 
on both the accuracy and f1-score for all the models. 
Also, the combination of all pre-processing steps records 

the highest impact on improving the performance of the 
tested models.

5.  CONCLUSION

The detailed experiments presented show that all 
the pre-processing steps when applied separately 
on Swahili textual data have a positive impact on 
the performance of all the evaluated classification 
algorithms. Among the experimented pre-processing 
steps, removing stop words has the highest impact on 
the performance of both accuracy and f1-score metrics 
when hyper-parameter tuning is used as a baseline step. 
The punctuation removal step has the lowest impact 
on the performance of both the accuracy and f1-score. 
Punctuation removal records the lowest impact because 
the Swahili textual dataset used has a low percentage 
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Figure 6.  F1-score improvements after combining the pre-processing steps sequentially.

of punctuation characters and the effect may increase 
when dealing with a dataset containing a larger number 
of punctuation characters.

Among all the evaluated algorithms, RF and SGD are 
the most affected by the pre-processing steps on 
the Swahili textual dataset, whereas LSTM-Uni and 
SVM are less affected by the pre-processing steps 
experimented in this study. The study shows that the 
LSTM-Uni algorithm has the best performance for the 
classification of Swahili textual data compared to the 
other tested algorithms.

We believe that our study results will help future NLP 
and Machine Learning researchers to carefully select 
these text pre-processing methods when dealing with 
Swahili textual data. Finally, as future work, we plan to 
work on improving typos, slang, stop words and Swahili 
corpus datasets, to accommodate more words that will 
be applied in different topics and to cover different 
platforms, both formal and informal platforms, such 
as social media. We will also add more pre-processing 
steps, for example, stemming, lemmatization, emoticons 
replacement, abbreviations and acronyms replacement, 
and so on, to our experiment and discover the individual 
impact of each pre-processing step in terms of the 
performance of machine learning algorithms on Swahili 
textual datasets.
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