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ABSTRACT

The increasing progress of Automated Driving (AD) technologies emphasises the significance 
of maps in ensuring the safety of these AD systems. While research has been conducted on the 
safety of AD systems themselves, the role of maps has not been thoroughly explored. In this  
article, we aim to address this gap by conducting an analysis to quantify the impact of maps on 
the functional safety of AD systems. We employ System Theoretic Process Analysis (STPA) to 
study an SAE Level 2 automated driving vehicle that relies on maps. Through this approach, we 
estimate and identify various unsafe scenarios that may arise due to map data. Furthermore, we 
conduct simulations using CARLA to measure the influence of safety-critical map features (iden-
tified based on the outcomes of STPA). To account for uncertainties in these safety-critical map 
features, we introduce a Gaussian noise signal into the model. To evaluate the vehicle’s safety, we 
establish Key Performance Indicators and record their values across various test cases. Through 
this research, we successfully identified unsafe scenarios along with their corresponding map 
features. Leveraging simulations, we also showcased the admissible error margins in the map for 
the selected map feature, ensuring the secure operation of an AD system.
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1.  INTRODUCTION

The swift progress of technology has brought about 
a change in the degree of automation in vehicles. The 
automotive sector has transitioned its attention from 
conventional manually operated vehicles to the auto-
mation of driving functions, commencing with driver- 
assist systems and advancing towards fully Automated 
Vehicles (AV) [1]. The widespread release of such auto-
mated driving systems emphasizes the necessity of 
evaluating and guaranteeing the safety and dependabil-
ity of in-vehicle systems.

Besides their advantages, AV do bring multiple chal-
lenges that must be dealt with. There is a lack of 
appropriate infrastructure needed to run autonomous 
vehicles [2]. The performance of such advanced sys-
tems depends on maps being readily available. Maps as 
a sensor provide priory knowledge sources for an AV 

and can play a key role in the capabilities and perfor-
mance of the vehicles. ADAS systems such as adaptive 
cruise control use the map feature about “speed limit” 
data to ensure the vehicle not only maintains a speci-
fied distance concerning the vehicle ahead but also a 
set speed.

Furthermore, traffic signs and incoming road curvature 
are also provided to the driver thus enabling better 
vehicle performance. Another application of maps for 
an AV is providing geofencing information such that an 
OEM can specify the Operational Design Domain (ODD) 
based on their vehicle’s capabilities and testing results 
[3]. Maps are provided to vehicles by various map ven-
dors such as TomTom [4]. Since these systems are heav-
ily reliant on navigation data, minor lapses in accuracy 
could have severe consequences [5].

Conventional safety analysis techniques such as Failure 
Mode and Effects Analysis (FMEA) and System Hazard 
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Analysis (SHA) yield scenarios of failure in physical 
components [6,7,8]. The system is modified to prevent 
the occurrence of such scenarios [9]. Physical testing of 
the prototype in these scenarios aids in the validation 
of its performance [10]. However, some scenarios go 
unnoticed during conventional safety analysis, result-
ing in an unexpected failure. FMEA, Fault tree analysis 
(FTA) and SHA are based on reliability theory and are 
designed to prevent component failure accidents [11]. 
Conventional safety analysis methods revolve around 
the failure of system hardware. A new method, System 
Theoretic Process Analysis (STPA), has been proposed 
for conducting a thorough analysis of software-driven 
control systems [12]. By using STPA, a different point 
of view on a system’s existing safety analysis outcomes 
can be obtained. Furthermore, the results can be used to 
improve the system’s existing overall safety.

Recent studies have been performed with the purpose 
of analyzing the safety of automated vehicles [13]. 
Currently, high definition maps are being utilized by 
multiple vehicle manufacturers for enabling different 
levels of autonomous driving [14]. However, in any of 
the studies, the role of these maps in the safety of auto-
mated driving has not been investigated. This article 
aims to bridge this gap by performing an analysis from 
a mapmakers’ point of view. This enables mapmakers to 
develop a clearer picture of the impact maps can have 
on the safety of the AD systems [15].

This article consists of four sections. Section 2 con-
tains a brief introduction to STPA and the selected 
self-driving simulator, CARLA. Section 3 explains the 
application of STPA and CARLA to the given problem 
statement. Section 4 shows the results of application 
of the defined methodology to the problem statement. 
This is followed by Section 5 in which the findings are 
discussed. Section 6 presents the conclusions which are 
drawn from the findings in the previous section.

2.  BACKGROUND INFORMATION

This section provides a detailed introduction to the 
selected safety analysis technique, System Theoretic 
Process Analysis (STPA). This is followed by a dis-
cussion of different self-driving simulators available, 
which is used in the selection of a simulator for the 
given application. The various features of the selected 

simulation environment, which are used in this study, 
are presented.

2.1.  System Theoretic Process Analysis

System Theoretic Process Analysis (STPA) is a hazard 
analysis technique based on an extended model of acci-
dent causation [12]. In addition to the failure of compo-
nents, STPA works under the assumption that accidents 
can be caused by unsafe interactions of system compo-
nents, none of which may have failed. In the STPA frame-
work, a system will not enter a hazardous state unless 
an unsafe control action has been performed by the con-
troller. The steps performed in the STPA approach are 
represented in Fig. 1.

There are four steps which are performed in STPA [12]:

1.		 Define the purpose of the analysis: STPA is per-
formed on a system for a specific purpose and 
requires a clear definition of the purpose and scope 
to ensure appropriate results [12]. The system 
under analysis must be defined by identifying the 
elements subject to analysis. The analysis scope 
pertains to the system under investigation. It is 
important to define the system by specifying its 
boundaries, interactions with other systems, and 
the environment.

2.		 Model the control structures: The second step of 
the analysis consists of modeling control structures 
which are used for identifying control actions, unsafe 
control actions and controller constraints. A hierar-
chical control structure is a top-down system model 
that is composed of feedback control loops [12,16].

3.		 Identify unsafe control actions: The listing of 
control actions is followed by the identification of 
unsafe control actions (UCAs). A UCA is a control 
action that, in a particular context and worst-case 
environment, will lead to a hazard [12].

4.		 Identify loss scenarios: Loss scenarios describe 
the situation that can lead to UCAs and to hazards 
[12]. The two types of scenarios which are identi-
fied in this step are:

		  (a)	 Why would UCAs occur?

		  (b)	� Why would control actions be improperly exe-
cuted or not executed, leading to hazards?

Figure 1.  Steps undertaken in STPA.
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2.2.  Selection of Autonomous Driving Simulator

A highly reliable autonomous driving vehicle requires 
testing of autonomous characteristics in every possi-
ble scenario. The design, implementation and testing of 
vehicles are not only costly but also time-consuming, in 
a wide range of use cases, in realistic traffic and weather 
conditions. Replicating a given worst-case environment 
or condition to test an autonomous driving vehicle is 
a challenging task. A suitable solution for autonomous 
driving software testing is a virtual platform in the form 
of an autonomous driving simulator [15].

An autonomous driving simulator is used for testing an 
autonomous vehicle within a defined virtual environ-
ment [17,18]. Key Performance Indicators are used to 
compare the performance of the vehicle in different sce-
narios. To select an appropriate simulator, criteria for 
evaluation were drawn as follows:

1.		  License mode

2.		 Operating system

3.		 Customization of simulation environment/world

4.		 Setup and execution time for simulation

5.		 Customization of control strategies

6.		 Production of videos/simulation quality

Simulators were reviewed by TomTom based on a set 
of hard and soft requirements [19]. Hard requirements 
are associated with providing simulation data, ROS 
interfacing, performance on currently utilized hard-
ware, and lastly a physical model of the vehicle and 
the world. Soft requirements are related to the quality 
of the vehicle, the world, weather and daytime simula-
tion, usability, and collision detection and avoidance. 
Due to the overlap with respect to the criteria drawn 
above, the results of this review were integrated in 
this article.

Simulators that were reviewed by TomTom are CARLA 
[20], Gazebo [21], Airsim [22], DeepDrive [23], Udacity 
Self-Driving car simulator [24], GTA V [25], AutonoVi 
[26], CarSim [27], IPG Carmaker [28], aiSim [29], VTD 
[30], PreScan [31], Webots [32] and LG Simulator [33]. 
The majority of the mentioned simulators are commer-
cially available whose licenses are not owned either by 
TomTom or TU/e, and thus are out of consideration. 
Simulators that were selected for the given application 
are the following:

1.		 CARLA

2.		 Webots

3.		 LGVSL

Based on the defined criteria for evaluation, we selected 
CARLA as the base autonomous driving simulator used 
for the given tests.

3.  METHODOLOGY

In this section, the methodology applied to the given 
system is presented. The application of STPA for a 
given system is presented below. This is followed by 
the description of the tasks performed in CARLA, which 
includes the processes involved in conducting tests and 
gathering information for post-processing.

3.1. � System Theoretic Process Analysis of  
Automated Driving

The process described in the previous section was 
applied to the automated driving system. The level of 
automated driving selected was 2 as per SAE [34]. STPA 
was conducted from the point of view of map-makers. 
The losses of the different stakeholders were iden-
tified and used for listing system-level hazards. The 
second step of the analysis was performed by modeling 
control structures for the system. The control actions 
were identified from the respective control structures 
[16]. Following their identification, they were catego-
rized based on their dependence on the map or auto-
mated driving system with an impetus given either to 
the former or a combination of the two categories. The 
third step consisted of identifying UCAs for the auto-
mated driving system. Criteria were applied to the list 
of control actions to yield UCAs. The UCAs concerning 
map features were the primary focus.

The last step of the analysis was the identification of 
loss scenarios. Loss scenarios were identified based on 
the UCAs identified in the previous step. Each scenario 
was categorized based on its severity and probability 
of exposure [35]. Severity was assigned a value from  
1 to 3 with 1 being the least severe and 3 being the 
most. A similar approach was followed for probability 
of exposure. The product of the severity and probability 
of exposure was used to assign a priority to each sce-
nario. The different levels of priority that were taken 
into consideration have been described in Table 1.

To understand the context, entities and the different 
triggers present in the scenario, a root cause analy-
sis of the high-priority scenarios was performed [36]. 
Furthermore, the map feature and its respective Key 
Performance Indicators which would be required by 
the vehicle in each scenario, to prevent the occurrence 

Level of Priority Product of S and E

Low priority 1

Medium priority 2, 3, 4, 6

Highest priority 9

Table 1.  Levels of priority based on product of  
severity (S) and probability of exposure (E).
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of a hazard, were identified. This marked the end of the 
safety analysis.

3.2.  Validation of Loss Scenarios

Loss scenarios were the output of STPA, which was fol-
lowed by their prioritization based on the severity and 
probability of exposure. The priorities assigned for dif-
ferent scenarios were validated using two sources of 
data. The first source of information was obtained from 
TomTom’s clients. They utilize TomTom’s high-definition 
(HD) maps in their L2 AD systems. The second set of sce-
narios was obtained using TomTom’s measurement data. 
Measurement data is collected using TomTom’s Mobile 
Mapping (MoMa) vehicles. They are mounted with dif-
ferent sensors which collect data used for making HD 
maps. Since these vehicles are driven on different types 
of road classes, the use cases sourced from the data were 
considered to be ground truth.

The three sets of use cases were brought together 
to form a pool of scenarios. Scenarios are validated 
by either finding a match between the two lists or by 
finding commonality in the description of the scenar-
ios. A form of commonality could be the common map 
features between the different sets of scenarios. If two 
scenarios were leading to a common hazard or were 
caused due to a common map feature, the loss sce-
nario could be considered to be validated. This process 
yielded a final list of validated loss scenarios, which is 
highlighted in Fig. 2.

3.3.  Simulation of Map Uncertainty

Safety critical features of the map were determined by 
classifying the features required in each high-priority 
scenario. Simulations concerning the accuracy of this 
feature in a worst-case environment were conducted by 
injecting noise into it. The simulations were conducted 
using CARLA [37].

In a simulation environment, a map is a replica of the 
physical world. When a map is built using ground truth 
data, errors will be generated whilst replicating those 
features in a model. Errors in the map could play a fun-
damental role in the decision-making process for the 
vehicle due to their dependence on map data. The simu-
lations primarily concern the impact of these errors on 
the vehicle’s lateral control.

For the given application in CARLA, pre-defined 
OpenDrive files provided in the build were used [38]. 
This was used for the generation of the waypoints 
which can be considered equivalent to the lane geome-
try feature in TomTom’s HD map. The set of waypoints 
generated was also used in route generation. Gaussian 
noise signals were injected into them to emulate a map 
which was made using ground truth data. The bias 
and jitter of the noise signal were estimated based on 
the range of accuracies of the HD map produced by 
TomTom [39]. The process is highlighted in Fig. 3. A 
vehicle model was selected from the Blueprint library 
in a parallel manner, which was prepared for simula-
tion. The process of noise injection into CARLA is illus-
trated in Fig. 4.

The simulation of vehicles required the definition of 
assumptions to limit the scope of simulation to those 
use cases concerning the usage of maps. The set of 
assumptions defined are as follows [15]:

1.		  Vehicle is operating/driving in automated driving 
mode.

2.		 Vehicle is reliant only on GPS, IMU and map data for 
manoeuvring a given route.

3.		 The vehicle has perfect localization, minimal errors 
in the positional estimate made by the GPS and IMU.

Figure 2.  Steps undertaken in the validation of unsafe scenarios. Figure 3.  Top view of noise injected in waypoints.
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4.		 Camera and LiDAR have been disabled to portray a 
worst-case environment for the vehicle’s automated 
driving (AD) system.

Key Performance Indicators (KPIs) were defined for 
evaluating each case’s severity. In a given worst-case 
state, the vehicle can be considered to be in a safe state 
if it follows the system-generated path with the least 
error and does not exit its occupied lane. The KPIs are 
presented in Fig. 5. Using this information, three KPIs 
are defined which are as follows:

1.		 Mean absolute error (MAE):

The error generated in tracking a path, which has an 
element of bias introduced in it. The error is estimated 
by taking the average of the difference of the vehicle’s 
location with respect to the original route (bias = 0).

2.		 Sensitivity:

		  Sensitivity
MAE

Bias
=
D
D � (1)

Sensitivity refers to the change of mean absolute error 
with respect to the change in mean noise injected into 
the map feature.

3.		 Lane invasions:

Refers to the number of occasions the vehicle cuts a 
lane. The function prints the number of times the vehi-
cle cuts a given lane and the type of lane it cuts into. 
This parameter was used to compare performance of 
the vehicle in difference cases of bias. Furthermore, 
the positions at which lanes are cut by the vehicle are 
also observed.

Figure 4.  Noise injection into the CARLA simulator.

Figure 5.  Calculation of Key Performance Indicators (KPIs) for the simulation.
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causes. A subset of the hazards, H2 and H3, has been 
presented in Table 2. The hazards presented were 
traced to the losses presented above.

Control structures were modeled to appropriately rep-
resent the system. The high-level (HL) control structure 
of automated driving vehicle using maps has been pre-
sented in Fig. 6. Modeled control structures were used 
for listing out control actions. The control actions were 
used as a base for identifying UCAs. Impetus was laid on 
identifying UCAs for those control actions which were 
filtered using the categorization process discussed in 
Section 3.1.

Loss scenarios were established through the utili-
zation of the Uncontrollable Adverse Events (UCAs) 
listing. An illustration of one such scenario, LS 4, is 

Hazard ID Hazard Definition

H2 The vehicle engages autonomous mode in 
restricted areas of the map.

H3 The AV follows the wrong trajectory.

Table 2.  List of hazards of Level 2 autonomous driving 
system.

4.  RESULTS AND DISCUSSIONS

The above-mentioned methodology is applied to the 
given Level 2 Autonomous driving system. The results 
of the vehicle-level safety analysis and CARLA simulator 
are presented in this section.

4.1.  Vehicle-Level Safety Analysis

Stakeholders of the analysis were identified from the 
problem context. This was followed by listing out the 
goals of each stakeholder, which were then inverted to 
formulate eleven losses. The goals of the map provid-
ers were closely associated with the HD map, thus their 
losses are related to the quality of the map. The list of 
losses identified for the map providers are as follows:

1.		 Loss in the completeness of maps

2.		 Loss in positional accuracy of maps

3.		 Loss in thematic accuracy of maps

4.		 Loss in logical consistency of maps

System-level hazards were identified using the system- 
level states. Each hazard was traced back to the loss it 

Figure 6.  HL control structure of AV using maps.
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Figure 7.  Loss scenario concerning missing lane markings on the road.

presented in Fig. 7. The vehicle in automated driv-
ing mode (AM) approaches a road with missing lane 
markings. The inability to provide lane information 
results in the localization system’s failure to estimate 
the vehicle’s lateral position with respect to the lane 
markings. As a result, the vehicle loses its lateral track-
ing momentarily. To track the path further, the vehicle 
must rely on the map data to drive to a location where 
the control can safely be handed over to the driver. If 
the vehicle receives inaccurate lane centerline infor-
mation, the vehicle would cause a hazard such as H3, 
highlighted in Table 2.

Each listed scenario was ranked based on the process 
mentioned in Section 3.1. The ranking of scenarios 
yielded high-priority scenarios. These were further 
categorized based on the map feature needed in the 
defined scenario. The breakdown of the scenarios with 
respect to the features is as follows:

1.		 Lane features

2.		 Traffic signs

3.		 Speed restrictions

4.		 Overhead structures

This concludes the results of the safety analysis. The 
results of the validation of loss scenarios are presented 
in the next subsection.

4.2.  Loss Scenario Validation

Scenario validation was performed to ensure that the 
loss scenarios relevant to the problem were appro-
priately identified. The process of validation began by 

pooling the scenarios obtained from STPA, TomTom’s 
clients and TomTom’s measurement data. 17 scenarios 
were identified using STPA. 32 scenarios were identi-
fied using TomTom’s client and measurement data. The 
validation of a scenario from STPA has been demon-
strated below.

The loss scenario presented in Fig. 7, LS 4, was vali-
dated using a use case from TomTom’s clients and 
MoMa. STPA yields a loss scenario wherein the vehicle 
encounters missing lane markings on inner city roads. 
TomTom’s client has identified a use case for its L2 AD 
system wherein the AV encounters a road stretch with 
no visible lane markings. MoMa surveys containing 
camera data indicated missing lane markings for given 
road stretches during its operations. Since each of the 
sources identifies the same root cause, missing lane 
markings, the scenario from STPA was considered to 
be validated.

Following the validation of scenarios, we can conclude 
the validation of loss scenarios. The next set of sections 
present the results obtained from performing simula-
tions in the CARLA simulator.

4.3.  CARLA Simulator Results

The results obtained by performing different tests using 
the CARLA simulator have been presented in this section. 
The focus of the tests conducted in the CARLA simulator 
were lane centerlines, which were represented with the 
help of waypoints. Different vehicles were selected for 
performing the simulations in CARLA. The parameters 
which were taken into consideration whilst performing 
simulations in CARLA are presented in Table 3.
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Parameters Range of Values

Type of noise Gaussian

Bias (mean noise) [–0.60, 0.60] meters

Jitter (standard deviation) [0, 0.20] meters

Curvature of road [0, 100] meters

Speed of vehicle 30 kmph

Sampling size [0.15, 2.5] meters

Table 3.  List of parameters considered in simulations.

Figure 8.  Plot of Mean Absolute Error (left) and Lane Invasions (right) vs Bias injected into lane centerlines (m) for R = 102 m.

The range of bias and jitter injected into the way-
points are varied from Table 3. The range of bias and 
jitter was selected based on the quality levels set by 
TomTom for their products. To emulate inner city/
urban road simulations, the speed of the vehicle was 
limited to 30 kmph.

A Gaussian signal, comprising of bias and jitter, was 
injected into the lane centerlines. The magnitude of the 
bias and jitter was varied based on Table 3. Two cases 
were considered in this test. The vehicle was driven 
on a straight road and on a path with a defined radius 
of curvature. The radius of curvature selected for this 
application was 102 meters. The KPIs were measured 
for the latter case and are presented in Fig. 8.

We observed that the MAE increased with the increase 
in the bias of the Gaussian signal in Fig. 8. Lane inva-
sions increased at higher orders of bias. A jitter of 20 cm  
resulted in maximum MAE and lane invasions in the 
second case.

Similar behavior of MAE and lane invasions was 
observed when the vehicle drove on a straight road.

5.  DISCUSSION

In this section, the results obtained from perform-
ing the methodology are presented. First, the results 
obtained from the safety analysis will be discussed, 

followed by the simulation on map uncertainty con-
ducted in CARLA.

5.1.  Safety Analysis

The safety analysis was performed from the point of 
view of map manufacturers, to understand the usage 
of maps by an AV system. Stakeholders were identi-
fied and their respective losses were listed. Hazards 
were identified at a system level. A dependency 
between the identified hazards was established. An 
instance of the dependency has been shown with the 
hazards H2 and H3. The occurrence of hazard H3 led 
to the occurrence of hazards H2. Thus, the triggering 
of multiple hazards from a single hazard was identi-
fied from this analysis.

In the safety analysis, control structures were modeled 
for the AV system, which yielded control actions. CA 
were filtered using a categorization process. The fil-
tered CAs were used for identifying UCAs. UCAs were 
filtered based on their dependency on map features, 
and the remaining UCAs were used in listing out unsafe 
scenarios. This process yielded a large pool of loss 
scenarios. The process of scenario prioritization was 
applied to the pool of scenarios which led to a concise 
list of high-priority scenarios.

The root cause analysis labeled 60% of the high-pri-
ority scenarios as unavoidable. This meant that the 
scenarios identified were out of control for the driver 
and could cause a hazard. In a worst-case scenario, the 
safety of the AV could be ensured by placing a higher 
confidence level in the map data as compared to sensor 
data. Higher confidence levels in maps could be com-
plemented with the aid of regular updates and quality 
checks. If inaccurate map data was provided in such 
scenarios, it could compound the existing scenario. This 
was observed in LS 4. The dependency of the vehicle’s 
lateral control on the quality of the map using CARLA 
has been demonstrated and has been discussed in the 
upcoming section.
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5.2.  CARLA Simulation Findings

Simulations were conducted on AD vehicles in CARLA. 
KPIs were defined and used in the evaluation of the 
impact of different parameters on the vehicle’s perfor-
mance. The bias and jitter varied in each simulation. 
The impact of uncertainty in the map was observed in 
two scenarios. The scenarios which were tested are the 
AV was driven on a straight road and then on a road 
with a defined radius of curvature [15].

By conducting various tests on different scenarios, 
it was observed that the amount of bias added to the 
lane centerlines had a linear relationship with the mean 
absolute error (MAE) of the vehicle. However, the same 
impact was not observed with jitter. This linear relation-
ship can be attributed to the vehicle tracking a path with 
added noise. As the noise-injected path was consistently 
at a varying distance from the original centerline, the 
vehicle’s localization estimate shifted by that specific 
distance with respect to the original centerline.

Lane invasions exhibited a non-linear relationship with 
bias. Higher magnitudes of jitter in the noise signal led 
to higher lane invasions. This resulted in the vehicle fol-
lowing a wavy path, which resulted in more lane inva-
sions being recorded. Lower magnitudes of jitter when 
coupled with higher magnitudes of bias led to many 
lane invasions due to the vehicle positioning itself close 
to the extremities of the lane borders.

We observed the role of map uncertainty on the vehicle’s 
performance. The lateral positioning of the vehicle was 
evaluated using the mean absolute error, while differ-
ent noise signals were added to the route being tracked. 
Additionally, we monitored lane invasions to determine 
whether the vehicle was able to remain within its desig-
nated lane. Multiple lane invasions posed a risk to other 
vehicles on the road, so this was used as an indicator of 
the safety of the noise added to the map.

6.  CONCLUSION

The impact of maps on the functional safety of an auto-
mated driving vehicle using maps was observed by 
performing two tasks: the safety analysis and the sim-
ulation of map uncertainty in a self-driving simulation 
environment. The safety analysis was aimed at identi-
fying scenarios in which an AD system could encounter 
a hazard despite performing its functions as per specifi-
cation, thus putting the vehicle at risk. Simulations were 
performed to visualize the impact of the uncertainty on 
the lateral control of the vehicle coupled with the failure 
of the camera.

In the safety analysis, loss scenarios were identified for 
the AD system which occurred due to unsafe interaction 
of system components. Loss scenarios occurred despite 
the optimal functioning of system components, thus 

justifying the selection of the safety analysis technique. 
Lane and traffic signs and speed restrictions were clas-
sified as high-priority safety-relevant map features. The 
analysis also yielded unsafe scenarios occurring due to 
incorrect map data. Furthermore, these scenarios were 
encountered despite optimal vehicle sensor feedback, 
which meant that the L2 AD system would encounter 
the identified hazards in its operational state. Hence, 
from the analysis performed, we can conclude that an 
approach solely based on sensors would not be suffi-
cient to guarantee the system’s safety.

Simulations were conducted in a self-driving envi-
ronment to assess the impact of map uncertainty and 
camera failure on the vehicle’s lateral performance. Two 
Key Performance Indicators (KPIs) were used to esti-
mate the lateral performance. The results from these 
tests indicate that a vehicle can navigate a given path 
with minimal sensor and map data. However, the suc-
cess of this approach heavily relies on the quality and 
accuracy of the map data. Noise in the map data does 
affect the lateral control of an autonomous vehicle 
(AV), and while it can never be completely eliminated, 
its magnitude can be reduced through rigorous quality 
checks during the map production process. Nonetheless, 
from the perspective of producing maps of such high 
accuracy may incur costs that outweigh the benefits 
gained in terms of lateral performance. Therefore, find-
ing a balance between production costs, map accuracy 
requirements and the capabilities of the map produc-
tion system is crucial.

Considering both the safety analysis and simulations, it 
is evident that an L2 AD system cannot ensure the safe 
functioning of the vehicle using solely sensor or map data. 
However, fusing data from both sources can enhance the 
AD system’s ability to guarantee safety in both its oper-
ational and fail-degraded states. AD system developers 
and mapmakers must collaborate on a unified safety 
concept to ensure the overall safety of the vehicle.

Finally, the scope of this paper was limited to conduct-
ing System Theoretic Process Analysis (STPA) on an SAE 
Level 2 automated driving vehicle using maps.
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