
CASE STUDY

Data Handling for Assuring Production Quality of
Image Intensive Autonomous Drive Systems: An
Industrial Case Study
Sushant Kumar Pandey1,2,*, Vasilii Mosin3,a, Darko Durisic3,b, Ashok Chaitanya Koppisetty3,c, Miroslaw Staron1,2,d

1Dept. of Computer Science and Engineering, Division of Software Engineering, Chalmers University of Technology, Gothenburg, Sweden
2University of Gothenburg, Gothenburg, Sweden
3Research & Development Department, Volvo Cars, Gothenburg, Sweden
aEmail: vasilii.mosin@volvocars.com
bEmail: darko.durisic@volvocars.com
cEmail: ashok.chaitanya.koppisetty@volvocars.com
dEmail: miroslaw.staron@cse.gu.se

ABSTRACT

Automotive software uses new Machine Learning (ML) algorithms in increased number of
systems, including active safety ones. However, with this new paradigm, new challenges arise
in the domain of safety-critical automotive software. This article reports on a case study of
the development of ML-based vision perception systems at one vehicle Original Equipment
Manufacturer (OEM). We investigate how image-intensive perception systems are developed,
both from the perspective of ML development processes and automotive software development
processes. We conducted interviews with four engineers who were involved in the development
process and subsequently performed thematic coding to extract key findings. We focus on
how the teams are involved in the process of assuring the production quality of the Society of
Automotive Engineers (SAE) level 3 functionality in modern passenger cars. We examine how
the ML development process phases (e.g., data collection, model training, and model validation)
align with the automotive software development phases (prototype development, software
development, validation, deployment). The study found that the development process for
ML-based vision perception systems in active safety allows for flexibility to adapt to changes
in data collection, and integrates ML model development into the software development
process. The investigated approach combines the Agile SAFe model, ML-model development,
and the standard automotive V-process model. This study shows an example of combining these
development processes using an industrial case study and presents the essential alignment
points between different phases of these processes. The study also recommends best practices
for developing similar systems in other companies.

ARTICLE DATA
Article History
Received 30 May 2023
Revised 30 August 2023
Accepted 21 September 2023

Keywords
ML-based system
Development process
Deep learning
Case study

*Corresponding author. Email: sushant.kumar-pandey@gu.se
© 2023 Chalmers University of Technology. Published by Athena International Publishing B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

1.  INTRODUCTION

Automotive software uses machine learning (ML) algo-
rithms in increasingly more functions, including active
safety ones. Although the ML algorithms provide bene-
fits of being able to adapt to new situations and gener-
alize from the previous data, they also introduce new
challenges [1]. One of these challenges is alignment
of the structured automotive software development
with its strict testing and validations phases with the

iterative nature of the process of training-testing-
validation of ML models. Another challenge is the fact
that data collection has become an integral part of the
automotive software development process [2].

Traditionally, the automotive software development
followed the V-shaped process model, which was
focused on the development of hardware, electronics
and software in different stages. Recently, the automo-
tive development processes migrated towards agile
software development – often following SAFe (Scaled

Journal of Software Engineering for Autonomous Systems
Volume 1, Issue 1–2, December 2023, pp. 29–47
DOI: https://doi.org/10.55060/j.jseas.231018.001, ISSN (Online): 2949-9372
Journal home: https://www.athena-publishing.com/journals/jseas

mailto:vasilii.mosin@volvocars.com
mailto:darko.durisic@volvocars.com
mailto:ashok.chaitanya.koppisetty@volvocars.com
mailto:miroslaw.staron@cse.gu.se
mailto:sushant.kumar-pandey@gu.se

30 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

Agile Framework) [3] or A-SPICE (Automotive Spice)
[4]. ML-based software development, on the other hand,
follows a data science approach, with focus on iterative
model training and validation [5,6,7]. The problem of
aligning the two processes is even more evident in the
development of systems that are somewhat evolution to
previous functions – e.g. using a new kind of camera in
low-speed maneuvering.

In the development of modern vehicles, with ML com-
ponents, these two processes need to be aligned as
data collection and model development require several
feedback loops before the software is ready for deploy-
ment. Software development (and product develop-
ment) teams need to understand how to combine the
iterative machine learning model development with
the iterative development of the automotive soft-
ware at large. In particular, they need to follow spe-
cific guidelines on handling the collected data (image
data); the collected data are generally used to train and
evaluate the ML model. These guidelines also ensure
the quality of the collected data and the quality of the
entire system under development. At the same time,
ML engineers need to understand the software require-
ments for planning data collection activities before
the models are architectured, trained and validated.
Software requirements provide a clear roadmap for
data collection. They specify the needed data (images)
types, sources, and quality criteria. These requirements
guide data collection efforts (e.g., driving scenarios),
ensuring that the collected data aligns with the proj-
ect’s objectives and the needs of the machine learning
models. Even seemingly routine tasks such as splitting
data into training, testing, and validation sets must be
carefully pre-planned. The data collection process can
be time-consuming and resource-intensive, ensuring
the accuracy of ML models [8] depends on the quality
and correctness of the data.

Previously, this problem has been approached from
either the data science perspective or from the perspec-
tive of software development. From the data science
perspective, Rassõlkin et al. [9] studied creation and
collection of data for autonomous vehicles (AV), find-
ing that the data collection and formatting are of crucial
importance. Divya et al. [10] has recently proposed a
list of instructions and guidelines for data collection for
AVs. From the automotive software development per-
spective, Jo et al. [11,12] provided guidelines for design
and development of distributed systems of autonomous
vehicles, including the ML components.

Currently, combining these two processes is a challenge.
This becomes clearer as companies work on developing
systems in this area. Merging software engineering with
machine learning lacks a standard approach, and it is
affected by activities such as how systems are released
and managed over time. For example, when existing
systems in the market need updates, the OEM must

figure out how to collect data and train algorithms to
match the system’s changing needs.

Therefore, we set off to study how these two processes
are combined by practitioners – or how professional
software development organizations address this prob-
lem. We designed and conducted a case study at one of
the vehicle OEMs. We interviewed engineers/developer/
testers involved in the development of image-intensive
perception systems for autonomous vehicles with level 3
SAE functionality1. To analyze the data obtained from
the interviews, we performed thematic coding [13],
which enabled us to extract pertinent findings.

We investigated how the development teams assure
the production quality of the Society of Automotive
Engineers (SAE) level 3 functionality in modern vehicles
by addressing the following research questions (RQs):

1.		 What are the best practices when combining
machine learning model development with automo-
tive software development? – which we studied to
understand how the company has integrated both
processes.

2.		 How do practitioners plan, execute and evaluate
image data collection in automotive software devel-
opment? – which we studied to understand the data
collection process and its quality evaluation.

3.		 How do practitioners define and measure test/
train/validation data split to assure production
quality of the entire system? – which we studied to
understand how the data was split into training,
validation, and testing sets; including the process
of securing such properties as data distribution
and preventing data leaks.

4.		 What characterizes a good architecture of the ML
model for such systems? – which we studied to
understand how the model architecture is defined,
and how the model was trained and validated. We
operationalized it in two sub-questions: How do
practitioners define the training process? and How
do practitioners quantify the model’s performance in
training, testing, and validation?

We conducted a case study of the development of
one function called “low-speed maneuvering” (LSM)
using fisheye cameras. This function required such
dedicated cameras to be specifically used in scenarios
where vehicles move slowly. According to our current
knowledge, this function is the first of its kind in the
automotive industry. The challenge of this develop-
ment is that image recognition, object detection and

1 SAE is the Society of Automotive Engineers, an organization
which defined five levels of autonomy of vehicles. Level 1 allows
for using driver assistance systems, while level 5 allows fully
autonomous vehicles without drivers. Level 3 allows conditional
driving automation.

31S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

semantic segmentations have not been studied or
developed for this type of camera. Although a large
extent of image recognition had been done before
at the company, these new types of cameras provide
images that have non-isotropic properties and there-
fore new models and new algorithms need to be pro-
vided. These new models, in turn, require new data
and new data collection procedures from the field,
annotations and quality assurance. We further iden-
tified that the model development phase is time-con-
suming and should consider primary attention from
the development team. Additionally, our investigation
revealed the alignment between the SAFe automotive
development process and fits with the machine learn-
ing development process.

The outcomes of our case study make a valuable contri-
bution by showcasing the practical combination of the
software development workflow for autonomous sys-
tems and the ML workflow. Our comprehensive analysis
of various phases across both workflows has provided
valuable insights into the interdependencies and over-
lap of phases inherent in the development of the LSM.
Our study has revealed how these two processes have
been aligned and how software development teams
have collaborated with data collection teams to plan,
execute and assess data collection activities meticu-
lously. We have observed that the data collection phase
is carefully planned while allowing for some flexibility
to accommodate all possible scenarios. Additionally, we
have discovered that several phases entail a feedback
loop to ensure the delivery of a high-quality product
consistent with the classical development process of an
autonomous system.

The next section will discuss the related work. Further,
we explore the study context and results in Section 3
and 4, respectively. Finally, we illustrate our key find-
ings, limitations, and conclude our work in Section 5–7,
respectively.

2.  RELATED WORK

This section provides an overview of the latest work
based on data handling and production quality analysis
in autonomous vehicles.

The use of autonomous vehicles (AVs) in transportation
has become an active area of research in recent years.
Manivasakan et al. [14] conducted a case study on AV
infrastructure requirements, formulating infrastruc-
ture change guidelines and prioritizing various safety,
efficiency, and accessibility concerns in AVs. Their work
provides a multi-model user comparison between
autonomous and conventional vehicles in Australia.
Jing et al. [15] conducted a survey study on AVs and
found that knowledge about AVs and perceived risk are
the two main potential obstacles for travelers to use
AVs and semi-AVs. However, unlike these studies, our

work emphasizes interviews based on the design of an
intelligent infrastructure system in AVs, focusing solely
on data handling.

Several studies have explored the optimization of ML
algorithms for AVs. Kim et al. [16] presented an industrial
case study on developing deep neural network (DNN)-
based object segmentation, which was found to be effec-
tive in improving the performance of ML-based AVs. They
exploited the correlation between surprise adequacy
and model performance, which enables the understand-
ing of model performance and data collection and helps
to identify how much further training is required. This
work provides valuable insights into optimizing the per-
formance of ML algorithms used in AVs. Fagnant et al.
[17] proposed an agent-based model for shared AVs and
found that they have the potential to replace traditional
vehicles while adding up to 10% more travel distance.
Although this work does not directly focus on develop-
ing ML-based perception systems for AVs, it highlights
the potential benefits and challenges associated with the
widespread adoption of AVs.

Our work builds on these studies by examining the
ML workflow for AVs by conducting interviews with
experts. The ML workflow consists of data collection,
model training, and model validation. The training and
evaluation phases of the ML workflow are computa-
tionally intensive [18], whereas the data collection and
labeling are manual labor-intensive [19]. Therefore, our
work investigates the data handling process in the ML
workflow by interviewing engineers who were part of
the development process and focuses on how the teams
involved in the process assure the production quality of
the SAE level 3 functionality in modern passenger cars.

In recent years, several works have been proposed to
develop building blocks for end-to-end AVs. One such
work proposed by Pranav et al. [20] is a real-time
pedestrian detection system that employs a convolu-
tional neural network (CNN) [21]. The authors used
public datasets and evaluated the performance of the
proposed model in real-time video input. The model
was compared with baseline methods and produced an
accuracy between 96.73% to 100%.

Li et al. [22] developed a human-like driving system
(decision-making system) for AVs to minimize the gap
between human drivers and the self-driving system.
They also used CNN, and the proposed model can detect,
recognize, and abstract the given road input. The model
calculates specific commands to regulate the vehicles.

Other recent works, such as lane detection [23,24,25],
real-time pedestrian detection [26,27,28], and driving
assistance systems [29,30,31,32,33], have also contrib-
uted to the development of high-quality image segmen-
tation systems in AVs.

Although our present work mainly focuses on inter-
views to develop an intensive image system for ensuring

32 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

product quality, these related works provide a solid foun-
dation for building autonomous driving systems that can
detect and respond to road situations in real-time.

3. � STUDY CONTEXT & RESEARCH DESIGN

Adaptive cruise control, auto parking, or parking assist
systems allow a certain degree of autonomous driving –
driver assistance. These features require an enormous
amount of data of the right diversity to either train an
ML/DL model or to validate the traditional control-loop
algorithm. The studied OEM collects a massive amount of
data to develop such features. In this case study, we focus
on low-speed maneuvering functionality based on dedi-
cated camera images. The data is collected in the form of
sequences of images by driving in different geographical
locations, weather conditions, and the time of the day.

Our study employs a qualitative interview approach to
address our research inquiries and investigate percep-
tions and experiences in developing image-intensive
autonomous drive systems. We have followed the
Empirical Standard of the ACM SIGSOFT (tinyurl.com/
QualitativeSurveys). The demographic information of

all the interviewees is shown in Table 1. Here, inter-
viewees E1 to E3 are responsible for the development
process, whereas E4 is associated with the testing team.

Sampling. The sampling technique used here was based
on selecting the experts who had the most experience
with this type of development, based on our previous
studies [34]. Table 1 shows the list of four interviewees,
who were part of this study. The table also reports the
designation, and year of experience. The last column
states the responsibilities of the interviewee in the func-
tion development.

Data Collection. The data collection process involved
conducting a series of interviews with participants. The
interview questions asked were designed to facilitate
the framing of research questions. It is important to
note that sub-questions are not included in this sum-
mary. The interview questions and their mapping with
research questions are presented in Table 2 to provide a
comprehensive overview of the data collection process.

Pre-Testing. Each interview was recorded and then
transcribed. The transcriptions were shared between
the research team members, while the recordings were

S. No Designation Experience (Years) Responsibilities

E1 Data Scientist ≥20 •	 data selection
•	 annotation guidelines and annotation process
•	 end-to-end responsibility to train and evaluate the models
•	 defining the collection requirements
•	 controlling the collection process
•	 quality assurance, and
•	 generating insights

E2 Senior Developer ≥10 •	 imaging pipeline development and hyperparameter tuning
•	 retrieving and processing raw images
•	 neural network development
•	 inference from camera images on target devices
•	 calculation and monitoring of quality KPIs for the perception model

E3 Senior Developer N/A N/A

E4 Technical Expert testing of
active safety function

≥20 •	 function testing
•	 reporting back detection
•	 testing collision avoidance functions

Table 1.  Demographic details. Note: We do not have the demographic information of E3 as they are no longer part of this study.

Interview Questions Research Questions

Q-1. What is basis for data collection for function development? RQ-1, RQ-2

Q-2. What is the basis for choosing a specific model architecture for specific function? RQ-1, RQ-4

Q-3. How is the data splitting defined and performed? RQ-1, RQ-3

Q-4. How are KPI for model performance constructed and monitored? RQ-1, RQ-3

Q-5. How is the training process defined and performed? RQ-1, RQ-3

Q-6. How is the validation process defined and performed? RQ-1, RQ-2

Q-7. How is the production model finalized? All

Q-8. Are the any mechanisms to control the quality of the data during the run-time? All

Table 2.  Mapping of interview questions to research questions.

https://tinyurl.com/QualitativeSurveys
https://tinyurl.com/QualitativeSurveys

33S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

Figure 1.  Overview of the thematic codes used for the development of low-speed maneuvering (LSM).

kept at the company promises, being accessed only by
the interviewer (as per consent with the interviewees).
After transcribing the interviews, thematic coding was
conducted by one of the authors, following established
methods [13,35]. The resulting codes and themes were
shared with the other authors, and a case study was
then performed based on the coded data.

Data Analysis. The collected data were qualitative;
therefore, we used thematic analysis as a data analysis
method [36]. We used a mixed form of coding, where
we started with several high-level codes based on our
RQs, then refined and adapted these codes when going
through the transcripts [37].

4.  RESULTS

In order to provide the context to the results, first we
provide qualitative codes to provide the overview, then
we start by presenting how the automotive software
development and the ML model development are com-
bined in the studied organization. Then, we present the
answers to the four research questions in our study, as
discussed in Section 1.

4.1.  Overview: Thematic Coding

Our analytical process involved identifying six high
levels thematic codes based on the data gathered from
the interviews conducted during the development of
the LSM, as illustrated in Fig. 1. These high-level codes
are 1) Requirements: Defining the specific function-
alities and objectives of the low-speed maneuvering
function using fisheye cameras in automotive scenarios.

It includes data, owner, function, and KPI requirements.
2) Data Preparation: Collecting and curating rele-
vant fisheye camera images and corresponding object
detection annotations for training and evaluation.
3) Preprocessing: Developing and implementing algo-
rithmic components to process fisheye camera images,
feature distribution, and data splitting. 4) Deployment:
Integrating the developing function into the automotive
system, considering safety checks, quality assurance,
and simulation. 5) Model Architecture: Designing and
selecting different architecture also includes training.
6) Performance Evaluation and Fine-Tuning: Assessing
the function’s effectiveness through KPIs and iteratively
refining the algorithm based on evaluation outcomes.
It includes manual analysis, KPI discussion, testing
& validation, and hyperparameter tuning. The figure
presents an overview of these codes. These high-level
codes are further divided into sub-codes. For instance,
Preprocessing code is divided into Feature
distribution, Data splitting, and Feature
selection, depicted in purple boxes. Notably, we
observed that these high-level codes align with the dif-
ferent phases of the classical ML workflow, as depicted
in Fig. 2.

4.2. � What Are the Best Practices When
Combining Machine Learning Model
Development With Automotive
Software Development?

Figure 2 shows the two different workflows: the top
figure indicates the typical workflow of software
development for automotive systems, whereas the
bottom figure indicates the ML-based workflow. The

34 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

Figure 2.  Software development workflow for automotive systems [38] and ML workflow. The top of the figure is the development
phase of a software project using the V-model at the OEM. Recognizing certain overlapping processes, we’ve categorized these phases
into A, B, C, and D (top of the figure). These signify the Software Requirements, Design, Testing, and Functionality stages, respec-
tively. Now each phase is divided into small states from S1 to S7. Software testing overlaps with design, starting between S1 and S2
and continuing until S4. After S4, the system undergoes calibration and optimization, which also overlaps with the software update
phases. The nine phases of ML workflow. Data collection planning, collection, cleaning & annotation are data-driven phases. Func-
tional requirements, model architecting, training, performance evaluation, testing & validation and deployment are model-oriented.
The backward arrows are the feedback from the current phase. The smaller arrow indicates training model may go back to model
architecting. The bigger arrows denote the current phases that may go back to any of the previous phases. The motivation for the ML
workflow is from Amershi et al. [5].

software development process for automotive systems
at the studied OEM follows a SAFe agile development
model2, which is combined with the traditional (to the
automotive domain) V-model.

The automotive software development process, altho
ugh iterative, still requires certain milestones – S0,
S1, ..., S7 – as shown in Fig. 2. High-level requirements
are often specified at the beginning of the project and
refined in the course of the software development (e.g.,
by defining user stories to be developed per program
increment and per sprint). Even testing is performed in
each phase as shown in Fig. 2 and then more intensified
towards the end.

The functional requirements of the ML workflow fall
under the requirements phase of the V-model workflow
of software development. First, there is a data collection
planning phase, where requirements for data are spec-
ified, e.g., the geographical location, time of day, driving
scenarios, number of data points. These requirements

are then used in the data collection phase, where a ded-
icated team drives in a dedicated fleet of cars to collect
the data to fulfill these specifications. After the data col-
lection phase, there is a need to clean and label data,
remove noise, and extract features for the ML model
training phase – model architecting phase. The data
collection planning and data collection phases of ML
workflow falls within the system design phase of the
V-model. The model architecting phase includes feature
engineering and initial model selection. This phase is
followed by the training phase. The training data set is
inputted into the learning model of the selected archi-
tecture to train the model; there is a direct feedback loop
between the training phase and the model architecting
phase, to change the selected features or model if the
model training metrics (or Key Performance Indicators)
are not sufficient.

We found that data cleaning & annotation phase of the ML
workflow falls under system design workflow of V-model.
According to the study, ML model architecting, and ML
model training phases of the ML workflow fall into the
implementation & unit testing phase of the V-model 2 https://www.scaledagileframework.com/

https://www.scaledagileframework.com/

35S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

workflow. Furthermore, the integration & integration
testing phase covers the performance evaluation phase.

Figure 3 shows the process workflow for developing the
ML-based vision software at the OEM who also works
with different suppliers who can collect the data and/
or develop the entire ML model. The numbers (from 1
to 7) in the figure state the time the process steps takes
place. If the supplier is involved, the function owner
from the OEM provides the functional and non-func-
tional product requirements (process step 1) to the
development team at the OEM and its supplier com-
pany, i.e., tier 1 supplier (T1-S). The software develop-
ment team, also known as the OEM team, is composed
of several sub-teams that work together to develop the
products. These sub-teams include the function devel-
opers, the data collection team, and the testing and vali-
dation teams. The function development team furnishes
the data collection team (process step 2, from function
developer to data collection team) with guidelines and
requirements for data collection. Specific process steps,
for instance, process step 3, are presumed to occur
concurrently. Due to this reason, they share identical
process step numbers. However, due to dependencies
from the T1 supplier, pinpointing the sequence in which
these steps occur can be challenging.

T1-S can share their collected data with the software
development team at the OEM (process step 4, from
T1-S to function developer). T1-S trains a model using
their own collected data for low-speed maneuvering.
The software development team trains a new model

(process step 4, from function developer to model train-
ing) using data collected by the OEM’s data collection
team and also tries existing baseline methods for similar
problems to understand how the ML model performs in
relation to the state-of-the-art. The software develop-
ment team also takes inspiration from T1-S model (pro-
cess step 4, from T1-S to function developer) to increase
the performance of their model. The research team at
the OEM also gives feedback and suggestions to make
the model more efficient and robust. After achieving the
target performance, the software development team
transfers the developed functions to the testing and val-
idation team at the OEM (process step 5). Testing and
validation teams perform required test cases in different
environments (process step 6). After acceptance from
the testing teams, the software component is deployed
to the vehicle (process step 7).

Based on the interviews, we can summarize the best
practices while developing such ML-based projects in
Table 3, which illustrates the phases of ML-based func-
tion development, the recommended practices, rationale
behind them and the related V-model or SAFe phase.

4.3. � How Is Data Collection Planned, Executed
and Evaluated for Automotive Software
Development?

To answer this research question, we have divided this
section into two distinct subsections: data collection
planning & execution, and data evaluation.

Figure 3.  Excerpt from the ML workflow at the OEM for the studied function. The process is organized into seven steps. Note: Few of
the process steps are executed simultaneously and therefore they are designated with the same process number.

36 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

Phase Activity Recommended Practice Rationale
Fall Under
V-Model Phase

Data
collection

Planning Plan data collection based on:
•	 geographical location,

weather conditions, driving
surface, scenarios, corner cases

•	 obstacles and team safety
•	 spread/quality of data
•	 potential data similarity/leak

When planning the data collection,
the software development team
should explicitly state which
requirements are essential for their
process, i.e., how they will train their
models.

System design

Data
collection

Execution Collecting data based on:
•	 set data collection goals, & plan,
•	 cover all scenarios,
•	 high-quality image data, and
•	 simulation for rare scenarios.

Feedback loop from the software
development team to collection to
adapt plans according to need. The
team analyzes the data and tries to
cover all possible real-life scenarios.
The team will also simulate data for
rare scenarios.

System design

Data cleaning
& annotation

Organizing,
removing noise,
categorizing &
labeling images

Examine the collected images
based on:
•	 each frame of collected data,
•	 categorizing images based on

scenarios, and
•	 annotate all the frames based on

scenarios.

Based on annotated data, the
software development team analyzes
all frames. There is a fixed set of
scenarios defined by them for
metadata. Annotated frames are
passed through system generated
checklist to avoid inconsistency.

System design

Model
architecting

Feature engineering
and model selection

Based on existing methods, try to
focus on:
•	 extract the relevant features,
•	 remove redundant features,
•	 data augmentations for corner

cases, and
•	 try simple and small model and

compare to baseline models.

The function development team
crops these images before the model
training. They preprocess to match
the training features. The team also
attempted to perform experiments
over existing used models using the
same code base.

Implementation
& unit testing

Training
model

Training, and
tuning

When training, remember to
manner:
•	 train the different models in

parallel, note the performance,
•	 track the performance in rare

scenarios,
•	 monitor potential presence of the

data leakage problem, and
•	 tune the model to increase the

performance.

The software development
team trains the few models
in parallel and tunes the
model hyperparameters.
They noted the performance
of each model while tuning
to understand when the
model performs well and
where new training/data
collection should be done.

Implementation
& unit testing

Performance
evaluation

Tuning and
optimizing

Based on selected models, follow:
select KPIs based on
requirements for data and for
the product performance (function
performance),
compare the performance using
KPIs, and
tune and optimize to reach the
required performance.

The software development
team compares the performance
of different models and optimize
the best one. They consult with the
research team to achieve the desired
performance.

Integration
& integration
testing

Testing and
validation

Function
testing

Keep in mind to:
executing all test cases,
testing of legal requirements,
threshold rating,
function owner’s performance
requirement, and
safety & security standards,
and ethics

The testing team ensures compliance
with safety and security standards by
conducting comprehensive functional
testing of the system using a variety
of test cases and simulations,
including rare scenarios. They rate
the model’s performance based on
their assessment of the functional
requirements and test results.

System testing

Model
deployment

Deployment Model deployment focus on:
•	 track the action of the functions

in all scenarios,
•	 note the deviation for all cases,
•	 test on the virtual environment to

generate emergencies or scenarios.

Deploy the developed function
in testing vehicles. The testing
team notes the performance in all
scenarios. They prepare the report
and submit it to the development
team.

Acceptance
testing

Table 3.  Phase illustration and recommended practice.

37S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

4.3.1.  Data Collection Planning & Execution

The data collection process is thoroughly planned, and
the data collection team has predefined guidelines for
how to plan and collect the data. The team also defines
the data collection goals (i.e., when the data collec-
tion can be considered as finished). The guidelines are
based LSM function that needs to be developed, geo-
graphical area by the different times of the year. For
instance, during winter, few places in a city, snowfall
is regular, and roads are covered with dense snow,
and some other types of obstacles/driving situations.
Generally, such guidelines are also motivated from
other developed functions. Based on these plans the
driving routes are created to cover the requirements
for the data to be collected for the developed function
(and the required scenarios). The single team setups
all the routes for the vehicles by combining require-
ments from different functions and teams; these teams
can work on different functions – it is important to
optimize the data collection process and collect data
from multiple processing functions and vehicle sen-
sors simultaneously.

Sometimes, depending on the time of the year, it may
not be easy to fulfill certain requirements (e.g., collect
winter data during the summer). The data collection
team tries to follow the guidelines, due to the driving
situations, the data collection team may decide to devi-
ate from the plan due to the team’s safety. On the other
hand, the collection team can deviate from the proce-
dure to collect important data based on driving situa-
tion at hand, because in plan-driven, they can only cover
a finite number of real-life scenarios and therefore cer-
tain degree of flexibility is needed.

The data collection phase commences when the data
collection goals are achieved. One of the goals is the
amount of data to be collected – measured in the number
of images or number of driving scenarios, geographi-
cal locations, or other (defined by the team). Although
to train a deep learning model requires a significant
amount of data, it is in practice difficult – collecting of
sufficient amount of data with the desired variability
can be challenging. Therefore, the data collection team
discusses the challenges with the software development
team before and during the collection process to fulfill
the data quality requirements as adequately as possible
without unnecessarily postponing the software devel-
opment process. The development team is responsible
for requesting data recollection and stopping the data
collection process. According to the development team,
the following are the attributes of high-quality image
data (valid for all scenarios):

1.		 High resolution
2.		 Annotations
3.		 Diversity of the dataset
4.		 Good spread
5.		 Minimum noise

These attributes are combined with scenario-specific
attributes. For example, for some scenarios it may be
important to use data of varying quality to be able to
assess the operational limits of the developed functions.
It can be the case that the OEM also collects data with arti-
ficially aged cameras to collect blurry images, so that the
function can operate even later in the vehicle’s lifecycle.

During the period of data collection the team needs to
address a number of challenges. The data collection
needs to cover several possible weather conditions –
summer, autumn, winter and spring – which requires
calendar time. Therefore, the planning needs to take
into consideration which requirements are covered
under which circumstances. In order to be able to intro-
duce new scenarios, when the model training requires
that, a significant amount of meta-data is collected. The
meta-data contains such attributes as the geographical
position, elevation, weather or time of day. It is used to
filter the data when training and testing the models.

Since it is both the T1-S supplier and the OEM who col-
lect the data, the interplay between these two teams is
well-defined. In general, the OEM puts the requirements
on the data collection, but for the T1-S supplier has a
degree of flexibility related to both the specifics (e.g., the
drivers may see a specific, interesting driving situation
to capture) and technical set-up (e.g., the ability of the
cameras to capture a specific situation or the need to
re-capture a rare driving situation). The OEM defines
true positive data, which are ranking scenarios for the
Euro NCAP3.

In summary, according to interviewee E1, there exists
a pre-planned approach that emphasizes adherence to
guidelines for data collection, with the primary focus
on data collection for scenario in which E1 work with.
Occasionally, the guidelines are established by E1, while
the route is determined by function owner analysis.
Guidelines are formulated based on the requirements.
E2 echoed similar sentiments, highlighting an orga-
nized approach with occasional spur-of-the-moment
decision-making. However, E3 mentioned that the sup-
plier team is also collecting data for the same function
development.

In case when the real data cannot be collected, the teams
create datasets using simulation environment and then
annotate them to ensure that the model is trained
properly even if real-world data is not available at the
moment. To achieve the correct/required data distri-
bution, they categorize scenarios into two sections, a)
worst-case scenarios and b) best-case scenarios, as
mentioned by the second interviewee (E2):

•	 So we will create data set and annotate it to get the
detailed performance figures on that. And we are also
looking at getting the real-life scenarios, select it as

3 https://www.euroncap.com/en

https://www.euroncap.com/en

38 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

some kind of criteria, like we have some worst-case sce-
narios and the best-case scenarios.

Corner case scenarios are challenging to collect and
handle in real life, such cases that need to be available
in the data so that the model can learn from those sce-
narios. For example, when the bike is loaded on the
moving truck, it would be confusing for the model to
detect the real moving object on the road (i.e., truck, not
bike). From the image-intensive system perspective, the
abrupt change in lighting intensity is still rare compared
to normal low-speed maneuvering driving without such
changes. These corner cases are the ones that are most
often simulated although, in the beginning, the team
leader instructs the team members about how to collect
corner case scenario.

Another scenario is the low-speed maneuvering in
urban and rural areas. T1-S describes their plan for such
cases, based on common space, the OEM’s software
development team puts their requirements, e.g., how to
drive, what to cover, etc. Otherwise, the T1-S team fol-
lows their own priorities and agenda, to optimize the
overall data collection process. The third interviewee
(E3) stated that:

•	 In the beginning we’ve been instructing people how to
collect those kind of corner case scenarios to cover, for
example, trolleys and these kind of things a bit more.

•	 So, it’s a communication part that they tell us, like, what
kind of things they plan and then there is a common
space where we put the requirements on them, like how
to drive, what to cover and so on.

4.3.2.  Data Evaluation

Function development team mainly ensures the quality
of collected, and annotated datasets, i.e., when the data
is being prepared for the training/test/validation pro-
cesses. To ensure data quality, the development team
analyzes one frame per second, and then based on the
metadata, they identify the relevant samples for both
the training, test and evaluation data. In this stage, the
metadata about the geolocations, time of day, etc. is only
one parameter, other parameters can be such metadata
as status of the vehicle, e.g., sudden brake when revers-
ing. T1-S employed software, the name of which remains
confidential due to a non-disclosure agreement, to
index these frames. Following this, a framework was
applied to execute the indexed frames, serving as a cura-
tion framework to assess these frames’ quality, and then
they perform active learning [39] to ensure it.

There is a manual review of sample frames, which is
performed by a different (independent) team (X team).
Before the data is indexed into an internal database
they perform automatic checks for the metadata, such
as, calibration correctness, GPS positioning accuracy,
etc. Both the development team and team X assess

the quality of data obtained from various sensors. For
instance, if the camera’s positioning is incorrect due to
any reason, the corresponding data is unusable and dis-
carded. The function development team also aggregates
all logs during each session of data collection. T1-S also
analyzes each log, which is a long, but necessary pro-
cess to ensure data quality and ultimately the product
quality. The development team inspects/analyze and
discusses the model performance and KPI reports reg-
ularly to ensure data quality. This information helps to
identify missing information in the data set. Finally, the
development team mainly focuses on the missing sce-
narios, so the team could achieve high accuracy predic-
tion results. The development team defines the required
prediction performance.

To annotate data, the development team selects each
frame in such a manner, so that they can get the best
match between cameras [40,41] and LiDAR4 (Light
Detection and Ranging) sweep. It is the one of the best
way for annotation [42,43] and for any camera tooling
activities. The frames that are indexed into internal
database. Similarly, for T1-S, there is another database
and the T1-S has a curation framework, which runs over
these frames.

In addition to the predefined data requirements, the
both T1-S team and function development teams use
active learning to ensure that the quality of the data set
is as optimal as possible. The score generated by the
active training model for each frame is noted, based on
the scores, each scenario works on the metadata, and
then frames are annotated based on scenarios.

Next is the data splitting into train/test/validation
process, which is executed by selecting the frames in
the distribution to match the project definition for the
annotation. For example, for the camera the function
development team defined that they want to have
the majority of the frames from the scenarios when
the drivers in the vehicle marked that they are close
to the obstacle. These frames are considered in the
first place due to their importance for safety testing.
However, if there are insufficient number frames for
the scenarios in the project, then they use frames of
different scenarios, for example, dense city (when
the vehicle was driving through a highly populated
area). They define different countable scenarios in the
project and follow their priority order, For example,
1) when driving close to the obstacles, 2) driving in
a dense city, i.e., driving in a highly populated area.
The final definition of curation scenario allows them
to set the ratios of each scenario they wanted to get,
and they will possibly never get perfect ratios because
they have a finite number of frames with given meta-
data attributes, but that is expected.

4 https://en-academic.com/dic.nsf/enwiki/26692

https://en-academic.com/dic.nsf/enwiki/26692

39S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

In the context of software development in such projects,
metadata can be used to describe individual frames
of data, with specific details depending on the project
in question. For instance, in the case of semantic seg-
mentation, each pixel in a frame is labeled with a class,
and different classes may have different attributes and
parameters depending on the types of objects present
in the frame. If a particular class is not available, each
object in the frame must be tested independently for
semantic segmentation and object detection. This level
of detail allows the development team to accurately
analyze and annotate the data, enabling them to create
more effective algorithms and models for their project.

They also consider the vehicle with or without a rider.
For example, a bike can be just standing on the side
of a road, or someone can be riding a bike (making it
a vulnerable road user), these are considered different
attributes or parameters of the same class. They had
an automatic tool for day/night lighting and weather
conditions, which help to create different weather con-
ditions for a given instance; they also annotate those
created instances. First interviewee (E1) during inter-
view mentioned that:

•	 So, we have the semantic segmentation when we anno-
tate the per pixel level each class. And we have the
object detection, so nothing special there. But there is
a plenty of classes and each of those classes have plenty
of parameters.

The segmentation network can recognize a number of
areas, e.g., drivable surface, vulnerable road users. To
ensure the data quality, they analyze different numbers
of vulnerable & non-vulnerable objects, types of cars,
and all these are in the train set.

Industrial recommended practice and rationale for data
collection planning, data collection, and data cleaning &
annotation are shown in the first three rows of Table 3.

Summary: The data collection process was thoroughly planned
based on the function requirements. The guidelines for data
collection are also based on weather conditions, geographical
locations, and other obstacles and even spontaneous actions (to
capture specific situations). Quality of the data is ensured by two
teams – one at the OEM and one at the T1-S supplier.

4.4. � How Is Data Splitting Defined in Order to
Assure Production Quality?

Data splitting plays a crucial role in training ML models.
It prevents overfitting, aids in monitoring perfor-
mance, fine-tuning, ensuring stability, robustness, and
other essential aspects of the model. Therefore, it plays
a crucial role to build an AI-based system in general,
and in the automotive software in particular. The major
challenge in the automotive image analysis is that the
data needs to be split based on its metadata (e.g., geo-
location) and based on image similarity (e.g., highways

are very similar regardless where the image is taken).
The metadata for the collected data contains several
salient pieces of information about the data. Function
developers exploit this information for function devel-
opment. The collected metadata contains for instance
(but is not limited to), information about weather con-
ditions, time of the year, sun elevation, geographical
location, road conditions, traffic conditions, etc. They
also considered annotations (semantic segmentation
and object detection) as metadata.

During the interview, E1 stated their approach to cov-
ering feature distribution by incorporating proxy fea-
tures. However, E2 expressed difficulty in achieving
optimal results when splitting data based on classes.
Additionally, E3 noted that due to varying geoloca-
tions, time periods, and other factors, there exist
multiple methods to effectively separate, train, and
evaluate data.

E1 conveyed that their data lacks a comprehensive
spread and does not cover all scenarios; hence they
often rely on metadata. They ensure quality assurance
through post-annotation checks and camera quality at
a fixed pixel level. To enhance data quality, they actively
communicate with suppliers. In order to measure the
quality of data, E1 employs KPIs. E2 mentioned that
sparse data in their training process, along with vary-
ing annotations for different classes, posed several
challenges, such as imbalanced classes, overfitting, and
difficulty in selecting relevant features. E3 highlighted
their usage of segmentation networks for some sce-
narios, where the data mostly comprises roads with no
objects. To ensure better distribution, they mentioned
that they need to focus on analyzing vulnerable objects
and applying sampling methods. Similar to E1, E3 also
employs KPIs to measure data quality.

Regarding data sampling, E1 mentioned their splitting
approach based on classes, vulnerable vehicles, and
applying frame-based splitting. They also utilize meta-
data for this purpose. E2 provided little information on
this topic. At the same time, E3 mentioned their use of
curation frameworks and T1-S using a tool for it.

The data collection team covers as many scenarios
as possible in the train set. The developer team splits
their dataset into training and evaluation sets based
on metadata to have the same distributions of features
(e.g., availability of the same objects or geolocation). For
instance, the team splits the data based on geograph-
ical location. This split prevents the situation when
they have images from completely different geograph-
ical locations in the training set (e.g. snowy mountain
regions) compared to the evaluation set (e.g., summer
setting with open lands), which can affect the perfor-
mance of the model and evaluation results.

Although there is no calculation of image similarity on
the pixel level, the geolocation is used as a proxy for the

40 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

image similarity measurements. The assumption is that
the images from different times or locations are differ-
ent. The data is also complemented with proxy features
to meet the real scenarios in the data, by defining grids
for data quality. Time and geolocation are the proxy fea-
tures; they are the features of the data (images) that are
used as proxies for calculating image similarities.

One specific aspect of data splitting, which is import-
ant for production-grade ML software is the reduction
(or complete removal) of data leaks. A data leak [44] is
considered when the same (or equivalent) data point is
used both in the training and in the test/validation data
set. According to Schutt et al. [45], a model can be at
risk of producing the data leak problem at any point in
time. A developer can build a model that works well in
a “clean” dataset, but will completely fail when applied
to a real-world situation. Our first interviewee stated:

•	 Our definition was a proxy for the actual data leak.
How else would you prevent the data leak from the like
machine learning meaning? We need to have an image
similarity model which would, try to prevent the actual
leak, because we work with the vision data.

The OEM team defines data leak in terms of time, geo-
location, driving situation and image similarity. The
data leaks when similar frames in the training set were
used for the evaluation of the model – e.g., consecutive
frames from a sequence of images. Image similarity
measure [46] can automatically calculate the presence
of data leakage. But image similarity would be different
for different functions, so they rely on visual perception.
Therefore, time and geolocation are added to the images
as a proxy feature to tackle data leak. A dedicated tool
has been developed for that purpose.

To verify the scenarios in the similar images, OEM team
also conducted experiments based on image embed-
ding. They wanted to train a model for a specific task and
extract the embedding of the images. To find similarity
between scenarios such as, 1) a car at the bus station,
2) another car at a different bus station. So the embed-
ding vector of these two images should be close to each
other in an n-dimensional feature space. They also con-
sider the concept of information leak, such as during the
night, there are fewer types of particular objects, and
during the day, there are more objects of another type.

Summary: The OEM team performs data splitting to meet the
requirements and all possible scenarios. The team also adds a few
proxy features in the train set to add rare scenarios. They split
the data into train and validation sets based on multiple criteria.
They also consider the concept of data leak and information leak.

4.5. � What Characterizes a Good Architecture
of the ML Model for Such Systems?

This RQ reports the model selection, training, and
evaluation process. We organize them into three

sub-research queries that address the model’s selec-
tion, training process, and evaluation in terms of key
performance indicators (KPI).

4.5.1.  How Is the Model Architecture Defined?

The first objective is to train a small and fast learning
model in order to understand the limitations of the data.
The function development team and T1-S both design
their first models as small and simple. They attempt
to perform experiments on previously used models (if
possible), using the same code base. To increase the
accuracy of the models another team member from the
OEM experiments on other state-of-the-art architec-
tures. They observed that the impact of data is higher
than the architecture. The team has also observed that
the order in which datasets are used in the training pro-
cess can lead to different results.

The team compares all models based on performance
and minimizes the deep learning network [47,48]
(number of layers, number of nodes, parameters, etc.)
in order to ensure that it can be used effectively on com-
putationally limited resources in the car [49]. After ana-
lyzing all the deep learning network architectures, they
list all types of suggestions to pursue. While evaluating
the networks, they eventually fine-tune the different
hyperparameters based on performance and easiness of
the training process. Our first interviewee stated about
model architecture and training process in the inter-
view are:

•	 But the first approach was just to use whatever we have
there in the zoo. How we know that the neural network
architecture is good for the particular task? We know
that there is no better thing? For the image size, batch
sizes for training and so on, that was something we
have tuned ourselves.

There are several challenges that the software devel-
opment team faces while developing the entire system.
For instance, the image is often defined in terms of
certain questions e.g., “the object properly visible”,
“how far the object is”, “what is the field of view”. The
capturing cameras are also limited in the number of
pixels, capturing objects fairly accurately up to a cer-
tain distance. The team precisely defined the size of
the input image.

Our recommended practice and rationale for model
architecting are shown in the fourth row of Table 3.

Summary: Both OEM and the T1-S start with a simple and fast-
learning model. Initially, they employ NN and deep NN, then
they perform the fine-tuning process. Simultaneously, another
team at the OEM conduct experiments on baseline methods
and different state-of-the architectures for comparison. The
networks are then minimized in terms of number of layers,
parameters, and nodes in order to ensure that they can be
executed on limited computing resources in vehicles.

41S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

4.5.2.  How Is the Training Process Defined?

The objective of this sub-RQ is to explore various
aspects of the training process for the development of
the vision perception system, as perceived by both the
OEM and T1-S. E1 interviewee state that, it is recom-
mended to utilize established baseline neural network
models to extract embeddings of objects. E2 mentioned
that T1-S additionally trained a parallel model using
their collected data on various environments: they also
helped in the tuning and training process in multiple
environments. They performed fine-tuning it for opti-
mal performance through weight and bias optimization.
They also meticulously adjusted the hyperparameters
of different models. E3 stated that, it is crucial to explore
state-of-the-art architectures that aim to minimize the
number of parameters while still achieving optimal
results. Additionally, both E1 and E3 said that the train-
ing from scratch may require significant manual work
and never-ending training, which can be mitigated by
employing parallel model training and continuous feed-
back with the research team. Our third interviewee
mentioned the following about training process:

•	 When it comes to the from scratch training of the net-
works, it’s a lot of manual work finding the best things
there. And there are methods to kind of try where you
can do an automatic optimization where there are opti-
mizers and where there are parameters and number of
epochs and so on.

The OEM finished the training based on evaluating loss
function and the KPIs. The OEM uses a specialized inter-
nal tool to assess predefined performance levels based
on hyperparameters. This tool evaluates trained models,
but we can’t disclose its name due to confidentiality
agreements. If the team wants to test over internal tool,
then they predefined number epochs and investigate
the values of the loss function. If the loss converges and
KPIs stabilize, then they stop the training. When they
have intersection over union loss [50], they pre-train
the model based on defined pre-training objectives.

When they apply KPIs to stop training, then the training
stops earlier or too late. For instance, when loss con-
verges and KPIs become stable, it saves some epochs
and system energy. However, the training process never
ends if they set specific KPIs goals, which they never
reach. Our third interviewee stated about role of KPIs:

•	 You could use KPIs even for stopping the training,
but then it’s a bit tricky, because you can either stop
earlier or stop too late. So, if you train for example,
and then you measure KPIs and let’s say you converge
quickly with good enough KPIs, then maybe you can
save some epochs and some energy in the system, so
you don’t train.

•	 But it could be also that if you target certain KPIs
and you never reach that goal then you can run

endlessly. So, you need to have another stop criteria
somewhere.

To avoid such challenges and achieve the most opti-
mal KPIs, they designed another stopping criterion
based on what system they develop. For instance, if
they train a network, but the data is from other sce-
narios, then the training process is limited. It is lim-
ited because these data are collected for some other
missions and can have different environments/geolo-
cations, etc. They also consider the scenarios of one
place, such as high traffic, which cannot guarantee
that the scenario works for another area with a sim-
ilar traffic scenario. Although new samples of data
enhance the model, which can improve the model’s
performance, it can also make the training process a
long and iterative one.

The information from the model training is fed back
to the model architecture stage to test the influence
of the architecture as shown in Fig. 2. Our third inter-
viewee commented over training feedback during the
interview:

•	 The information from the training fed back to the model
architecture stage? If it influences the model architec-
ture? It is actually. We just recently changed one thing
when it comes to, for example, the encoders.

Industrial recommended practice and rationale for
training a model phase is shown in the fifth row of
Table 3.

Summary: The team trains the network from scratch based on
a lot of manual work. T1-S supports by optimizing weights and
bias values. They also help in the training of the model in multiple
environments. OEM team also performs a lot of manual work to
analyze the training process. When the loss converges and KPIs
become stable, they stop the training.

4.5.3. � How to Quantify the Model’s Performance in
Training, Testing, and Validation During the
Production Quality of ML-Based Systems?

Performance evaluation constitutes a fundamental
stage within the ML-workflow, as depicted in Fig. 2.
Prior to requesting additional data collection, it is
advisable by E1 to first assess the model’s performance
using three levels of KPIs at the detection level. These
KPIs can be used to test the model’s efficacy for fur-
ther improvement. These KPIs are: 1) pixel-level eval-
uation, 2) feature-level evaluation based on projection
onto the occupancy grid, and 3) sensor fusion-based
evaluation encompassing the entire system function.
Our first, second, and third interviewees, respectively
stated regarding KPIs and performance evaluation:

•	 So, you know there’s like 3 levels of KPI’s measure-
ments at least. I mean the first one is on the pixel level,
second one is on the projection to the occupancy grid,

42 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

measurement or whatever, and the third one is after
the sensor fusion.

•	 We as a team focus on functional KPIs or we just focus
on the algorithm KPIs. We only work with perception.

•	 It could be an issue if we for example look at the object
detections. So, let’s say that we would like to have very
high performance on the humans, we care less about
high performance on the cars.

On the measurement grid, the focus lies on optimiz-
ing the predictive performance of emergency braking
post-sensor fusion. The KPIs are continuously tracked
at every stage, beginning with pixel-based evaluation.
Specific functions are required to operate accurately
within a virtual environment. In case of deteriorat-
ing KPIs in subsequent model iterations, the software
development team engages in a comprehensive analy-
sis of the entire process to identify the root cause. This
may involve scrutinizing sensor data, examining sensor
fusion, or investigating camera data. The OEM has mul-
tiple teams dedicated to performance evaluation and
root cause analysis, which collaborate to enhance the
model’s overall performance.

E2 stated that, to achieve detailed performance eval-
uation, a data set should be created with annotations
based on KPIs and model stability. The team can then
determine desired performance levels based on rating
scenarios. During data design and dataset creation, the
development team defines various KPIs. For example,
they establish true positive sets that assess the mod-
el’s performance in detecting target dummies when a
car navigates on the track. Interventions in these sets
are carried out to create rare scenarios that are prere-
corded. However, such scenarios are not included in the
training set to prevent data leakage. Additionally, KPIs
are designed for other types of object detection, such
as detecting humans versus cars in the images. In such
cases, the performance is split into intersection over
union (IoU) over different objects. Finally, E3 mentioned
that the model should be evaluated based on various
parameters, such as network size, image size, stable
KPIs, and the root cause of any issues should be traced
back to losses and KPIs. Training performance should
be tracked to ensure optimal results. We recommend a
specific set of practices during the performance evalua-
tion and testing & validation phases, which are detailed
in the sixth and seventh rows of Table 3.

Summary: The team organizes KPIs at three levels, i.e., pixel
level, occupancy grid level and sensor fusion level. They measure
IoU for pixel-based, then KPIs for simulation environment and to
minimize false positive rate. They backtrack all the phases in case
when they identify the poor performance of the model. They
have different teams to examine the model’s performance based
on different level of KPIs. They focus on the true positive rate for
when the car drives in the target dummy’s track and prerecorded
scenarios.

5.  DISCUSSION

Our investigation has revealed that automotive soft-
ware development incorporating ML is considerably
more complex than that of desktop software or oper-
ating systems. Contrary to previous studies, such as
Amhersi et al. [5] research at Microsoft, our findings
indicate that the focus is on data collection from the
field and the subsequent model development phases.
The studied company places substantial emphasis on
planning data collection from the perspective of data
quality, e.g., to prevent data leaks. This is unlike other
companies, which often resort to designing their own
data split algorithms after the fact. During the data col-
lection phase, a concentrated effort should be made
to achieve the driving scenario objective, while simul-
taneously encompassing all possible scenarios and
image quality. Particular attention should be devoted
to corner cases, as they may require special handling to
ensure the safety of the vehicle, its occupants, and the
surrounding environment.

We have established a correlation between the phases
of the SAFe process and the ML-workflow, as indicated
in the final column of Table 3. Our observations indicate
that the system design phase encompasses data collec-
tion and planning, as well as data cleaning and anno-
tation. Similarly, the implementation and unit testing
phases pertain to model architecture design and per-
formance evaluation. Moreover, the system testing and
acceptance testing phases are associated with testing
and validation, and model deployment, respectively.
Our findings align with those of Falcini et al. [51], as
previously reported.

Given the ongoing development stage of the LSM func-
tion, we cannot address post-deployment consider-
ations at this point. Our study should have covered this
aspect, which is crucial for adapting machine learning
systems. We cannot comment whether the interviewed
team applied post-deployment measures to the LSM
function. Future research could explore strategies for
managing post-deployment changes in ML-based auto-
motive functions to enhance sustained performance
understanding.

Based on our research, we recommend a systematic
approach to model development. First, the develop-
ment team should create a simple and concise model
and then optimize it accordingly. Alternatively, they
can explore existing solutions that minimize the risk
of unexpected behavior and reduce the effort required
for model testing, validation, and deployment. During
the training phase, the team should monitor data qual-
ity, in particular, rare case scenarios and data leakage,
by tracking suitable KPIs to measure progress (e.g.,
Staron et al. [52]). In addition to standard ML testing

43S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

and validation, the team should also perform software
test cases, legal requirements, and safety and security
tests. Our findings align with previous research by
Salay et al. [2] and Rabe et al. [53].

6.  VALIDITY EVALUATION

This section will discuss the potential threats and vul-
nerabilities in our study’s design, methodology, and
findings. By identifying and addressing these potential
threats, we aim to enhance the credibility and reliability
of our research outcomes.

Internal validity
One potential internal threat to validity is the pos-
sibility of selection bias. There are four participants
in our study were all involved in the development
process of image-intensive systems, which may limit
the generalizability of our findings to other domains.
Additionally, the sample size was relatively small,
which could affect the representativeness of our
results. Furthermore, the interviews were conducted
by a single interviewer, which may introduce inter-
viewer bias, and the interviewees’ behavior and mood
during the interview could also influence the results.
Finally, there may be inconsistencies in the coding
process, which could affect the accuracy and consis-
tency of our results.

External validity
External validity refers to the extent to which the find-
ings of this study can be generalized to other settings,
populations, or contexts. To mitigate this, we may need
to collect data from a larger and more diverse sample
of engineers working on similar projects. Additionally,
we should consider conducting the study in other orga-
nizations to examine the generalizability of the find-
ings. To address potential bias, we could also consider
using multiple methods of data collection and analysis.
To ensure that the study’s findings accurately reflect
the perspectives and experiences of the participants,
we should engage in member checking, which involves
sharing the study’s results with the engineers who were
interviewed and asked for their feedback on the accu-
racy and completeness of the findings.

Furthermore, our study focused on developing and
evaluating the low-speed maneuvering function using
fisheye cameras. However, we need to consider how the
hardware, platform, and software are integrated into
the automotive system. This could impact the function’s
real-world performance due to practical challenges
introduced by hardware integration. Not having specific
questions about hardware integration is a limitation of
our study. Our findings mainly relate to the function’s
development and effectiveness in terms of software
and algorithms. However, smooth hardware integration
is crucial for successful real-world deployment, which

our study should have thoroughly addressed. Future
research could delve into dedicated inquiries about
hardware integration to improve the broader under-
standing of such a function’s implementation chal-
lenges. This would provide a more comprehensive view
of the function’s function in practical scenarios.

Construct validity
Maintaining construct validity is crucial for ensuring that
a study accurately measures the intended constructs
and concepts. In our study, we focused on the develop-
ment of ML-based vision perception systems for active
safety in an automotive OEM, we took several measures
to strengthen the construct validity of our research.
First, we carefully selected and operationalized the
variables based on established theoretical frameworks
and expert opinions. Second, we conducted pretesting
of our measures to assess their clarity and effectiveness.
Finally, we conducted thematic coding and shared it
with group members to ensure consistency and reliabil-
ity. By following these steps, we are confident that our
study accurately measures the relevant constructs and
provides a strong foundation for our analyses.

Conclusion validity
Conclusion validity is crucial for ensuring that the con-
clusions of a study are based on sound data and analy-
sis. However, our study is limited by the fact that we only
collected data from one team at the OEM. This restricts
the generalizability of our findings, and to strengthen
the validity of our conclusions, we recommend incor-
porating data from other sources, such as archival data,
observations, or interviews with additional stakehold-
ers involved in the development process. By doing so,
we can enhance the validity of our conclusions and
ensure that they accurately reflect the broader context
of the study.

A limitation stems from the case study’s constrained
size and scope. Although our study provides valuable
insights into developing and evaluating the low-speed
maneuvering function using fisheye cameras within a
specific context, directly extrapolating these findings to
broader scenarios could be challenging. The case study’s
focused nature might limit the function’s applicability
to different deployment contexts and diverse hard-
ware configurations. Further research involving larger
and more varied scenarios is necessary to enhance the
generalizability of such function’s outcomes.

Our study’s results may affect its applicability in differ-
ent project phases and Technology Readiness Levels in
a combined process. We acknowledge this limitation in
our study’s scope and conclusions.

7.  CONCLUSION AND FUTURE WORK

Machine learning takes increasingly more place in auto-
motive software development, as increasingly more

44 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

functions use machine learning algorithms. One of the
areas is vision perception systems, where static images
or video feeds are used to identify obstacles. However,
the use of these algorithms requires changes in automo-
tive software development processes.

In this article, we studied the process of developing
a vision perception system for one of the features of
the SAE level 3 autonomy. The challenge in develop-
ing this system is the use of dedicated cameras, which
are common in the automotive systems, but not well-
supported in machine learning research (image recog-
nition, object detection, semantic segmentations).

In this study, we found that the SAFe automotive devel-
opment process can be aligned with the machine
learning development process. We also found that the
development team should always involve in the data
collection phase, as it is the most important phase in
the development process. The team should also focus
on the model development phase, as it is the most
time-consuming phase.

Our study also revealed a meticulous data collection pro-
cess guided by functional requirements and real-world
conditions. The quality of the collected data is vital for
the subsequent stages of development. Collaborative
efforts between different teams and ML models impact
the overall assurance of production quality. Additionally,
considerations of data leak problems reflect the com-
prehensive strategy and over-all product quality. Our
study highlights a careful data collection process driven
by functional needs and real-world scenarios, indicating
its role in subsequent development stages. The collab-
oration between various teams and machine learning
models profoundly influences overall production qual-
ity assurance. Moreover, different teams also look for
data leak issues that can affect the overall product qual-
ity. Our study’s limitations include the number of inter-
viewees and involved customers. It offers an illustrative
example of integrating development processes within a
specific context, providing valuable insights from this
limited scope.

While our study offers valuable insights, its scope is con-
fined to four interviewees from a single OEM, impacting
generalizability. Therefore, in future work, we plan to
collect and integrate diverse data sources – like archival
records, observations, and interviews with varied com-
panies to provide a more comprehensive context for our
findings. We also plan to conduct similar interviews in
other development projects of multiple OEMs to ensure
product quality. We also plan to conduct interviews
and discussions over the testing process, production
model finalization, and data quality during run time.
Furthermore, we plan to explore the evolution of the
combined process during deployment/utilization and
its adaptability across various Technology Readiness
Levels, providing deeper insights into its dynamics and
versatility across diverse project contexts.

Acknowledgment

The authors would like to thank the interviewees for
their time, input and validation of the findings.

Conflict of Interest

The authors declare that they have no conflicts of
interest.

Data Availability

The interview transcripts data supporting the findings
of this study are available from Volvo Cars Corporation.
However, we are unable to share them due to a non-
disclosure agreement.

Funding

This study was funded by Vinnova, FFI, Fordonsstrategisk
forskning och innovation (Grant Number 2018-02725).

Authors’ Contribution

Sushant Kumar Pandey: Research Design and Plan
ning, Data Analysis, Writing – Original Draft, Writing –
Review & Editing, and Visualization.
Vasilii Mosin: Participant Selection, Interview con-
ducting, Review & Editing.
Darko Durisic: Supervision, Research Design and
Planning, Review & Editing.
Ashok Chaitanya Koppisetty: Supervision, Research
Design and Planning, Review & Editing.
Miroslaw Staron: Supervision, Research Design and
Planning, Writing – Review & Editing, and Visualization.

REFERENCES

[1]	 M. Staron. Automotive Software Architectures:
An Introduction. Cham: Springer, 2021, pp. 274.

[2]	 R. Salay, K. Czarnecki. Using Machine Learning
Safely in Automotive Software: An Assessment
and Adaption of Software Process Require
ments in ISO 26262. 2018, arXiv preprint
arXiv:1808.01614.

[3]	 R. Brenner, S. Wunder. Scaled Agile Framework:
Presentation and Real World Example. 2015 IEEE
Eighth International Conference on Software
Testing, Verification and Validation Workshops
(ICSTW). Graz, Austria: IEEE, 2015, pp. 1–2.

[4]	 G. Macher, A. Much, A. Riel, R. Messnarz, C.
Kreiner. Automotive SPICE, Safety and Cyber
security Integration. In: S. Tonetta, E. Schoitsch,

https://doi.org/10.1007/978-3-030-65939-4
https://doi.org/10.1007/978-3-030-65939-4
https://doi.org/10.48550/arXiv.1808.01614
https://doi.org/10.48550/arXiv.1808.01614
https://doi.org/10.48550/arXiv.1808.01614
https://doi.org/10.48550/arXiv.1808.01614
https://doi.org/10.48550/arXiv.1808.01614
https://doi.org/10.1109/icstw.2015.7107411
https://doi.org/10.1109/icstw.2015.7107411
https://doi.org/10.1109/icstw.2015.7107411
https://doi.org/10.1109/icstw.2015.7107411
https://doi.org/10.1109/icstw.2015.7107411
https://doi.org/10.1007/978-3-319-66284-8_23
https://doi.org/10.1007/978-3-319-66284-8_23
https://doi.org/10.1007/978-3-319-66284-8_23

45S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

F. Bitsch (Eds.), Computer Safety, Reliability,
and Security: SAFECOMP. Cham: Springer, 2017,
pp. 273–285.

[5]	 S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E.
Kamar, et al. Software Engineering for Machine
Learning: A Case Study. 2019 IEEE/ACM 41st
International Conference on Software Engineer
ing: Software Engineering in Practice (ICSE-SEIP).
Montreal, QC, Canada: IEEE, 2019, pp. 291–300.

[6]	 T.M. Mitchell. Machine Learning. New York:
McGraw-Hill, 1997, pp. xvii, 414.

[7]	 Y. LeCun, Y. Bengio, G. Hinton. Deep Learning.
Nature, 2015, 521(7553): 436–444.

[8]	 V. Mosin, M. Staron, D. Durisic, F.G. de Oliveira
Neto, S.K. Pandey, A.C. Koppisetty. Comparing
Input Prioritization Techniques for Testing Deep
Learning Algorithms. 2022 48th Euromicro
Conference on Software Engineering and
Advanced Applications (SEAA). Gran Canaria,
Spain: IEEE, 2022, pp. 76–83.

[9]	 A. Rassõlkin, V. Rjabtšikov, T. Vaimann, A.
Kallaste, V. Kuts, G.L. Demidova. Digital Twin
Data Handling for Propulsion Drive System of
Autonomous Electric Vehicle: Case Study. 2020
IEEE 61th International Scientific Conference
on Power and Electrical Engineering of Riga
Technical University (RTUCON). Riga, Latvia:
IEEE, 2020, pp. 1–5.

[10]	 K. Divya, G.S. Girisha. Autonomous Car Data
Collection and Analysis. International Journal of
Scientific Research & Engineering Trends, 2021,
7(3): 2056–2059.

[11] 	 K. Jo, J. Kim, D. Kim, C. Jang, M. Sunwoo.
Development of Autonomous Car—Part I:
Distributed System Architecture and Develop
ment Process. IEEE Transactions on Industrial
Electronics, 2014, 61(12): 7131–7140.

[12]	 K. Jo, J. Kim, D. Kim, C. Jang, M. Sunwoo.
Development of Autonomous Car—Part II: A Case
Study on the Implementation of an Autonomous
Driving System Based on Distributed Archi
tecture. IEEE Transactions on Industrial
Electronics, 2015, 62(8): 5119–5132.

[13]	 V. Braun, V. Clarke. Thematic Analysis. In: H.
Cooper, P.M. Camic, D.L. Long, A.T. Panter, D.
Rindskopf, K.J. Sher (Eds.), APA Handbook
of Research Methods in Psychology, Vol. 2.
Research Designs: Quantitative, Qualitative,
Neuropsychological, and Biological. American
Psychological Association, 2012, pp. 57–71.

[14]	 H. Manivasakan, R. Kalra, S. O’Hern, Y. Fang, Y.
Xi, N. Zheng. Infrastructure Requirement for
Autonomous Vehicle Integration for Future
Urban and Suburban Roads – Current Practice
and A Case Study of Melbourne, Australia.
Transportation Research Part A: Policy and
Practice, 2021, 152: 36–53.

[15]	 P. Jing, H. Huang, B. Ran, F. Zhan, Y. Shi. Exploring
the Factors Affecting Mode Choice Intention
of Autonomous Vehicle Based on an Extended
Theory of Planned Behavior—A Case Study in
China. Sustainability, 2019, 11(4): 1155.

[16]	 J. Kim, J. Ju, R. Feldt, S. Yoo. Reducing DNN Labelling
Cost using Surprise Adequacy: An Industrial Case
Study for Autonomous Driving. Proceedings of the
28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering. New York,
US: ACM, 2020, pp. 1466–1476.

[17]	 D.J. Fagnant, K.M. Kockelman. The Travel
and Environmental Implications of Shared
Autonomous Vehicles, using Agent-based Model
Scenarios. Transportation Research Part C:
Emerging Technologies, 2014, 40: 1–13.

[18]	 L.E. Lwakatare, A. Raj, I. Crnkovic, J. Bosch, H.H.
Olsson. Large-scale Machine Learning Systems
in Real-world Industrial Settings: A Review
of Challenges and Solutions. Information and
Software Technology, 2020, 127: 106368.

[19]	 J.H. Migueles, C. Cadenas-Sanchez, U. Ekelund,
C. Delisle Nyström, J. Mora-Gonzalez, M. Löf,
et al. Accelerometer Data Collection and
Processing Criteria to Assess Physical Activity
and Other Outcomes: A Systematic Review and
Practical Considerations. Sports Medicine, 2017,
47: 1821–1845.

[20]	 K. Pranav, J. Manikandan. Design and Evaluation
of a Real-time Pedestrian Detection System for
Autonomous Vehicles. 2020 Zooming Innovation
in Consumer Technologies Conference (ZINC).
Novi Sad, Serbia: IEEE, 2020, pp. 155–159.

[21]	 C. Nebauer. Evaluation of Convolutional
Neural Networks for Visual Recognition. IEEE
Transactions on Neural Networks, 1998, 9(4):
685–696.

[22]	 L. Li, K. Ota, M. Dong. Humanlike Driving:
Empirical Decision-Making System for
Autonomous Vehicles. IEEE Transactions on
Vehicular Technology, 2018, 67(8): 6814–6823.

[23]	 A.A. Assidiq, O.O. Khalifa, M.R. Islam, S. Khan. Real
Time Lane Detection for Autonomous Vehicles.
2008 International Conference on Computer
and Communication Engineering. Kuala Lumpur,
Malaysia: IEEE, 2008, pp. 82–88.

[24]	 Z. Chen, Q. Liu, C. Lian. PointLaneNet: Efficient
end-to-end CNNs for Accurate Real-Time Lane
Detection. 2019 IEEE Intelligent Vehicles
Symposium (IV). Paris, France: IEEE, 2019,
pp. 2563–2568.

[25]	 Z. Wang, W. Ren, Q. Qiu. LaneNet: Real-Time Lane
Detection Networks for Autonomous Driving.
2018, arXiv preprint arXiv:1807.01726.

[26]	 R. Harshitha, J. Manikandan. Design of a Real-Time
Pedestrian Detection System for Autonomous

https://doi.org/10.1007/978-3-319-66284-8_23
https://doi.org/10.1007/978-3-319-66284-8_23
https://doi.org/10.1007/978-3-319-66284-8_23
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/seaa56994.2022.00020
https://doi.org/10.1109/seaa56994.2022.00020
https://doi.org/10.1109/seaa56994.2022.00020
https://doi.org/10.1109/seaa56994.2022.00020
https://doi.org/10.1109/seaa56994.2022.00020
https://doi.org/10.1109/seaa56994.2022.00020
https://doi.org/10.1109/seaa56994.2022.00020
https://doi.org/10.1109/rtucon51174.2020.9316471
https://doi.org/10.1109/rtucon51174.2020.9316471
https://doi.org/10.1109/rtucon51174.2020.9316471
https://doi.org/10.1109/rtucon51174.2020.9316471
https://doi.org/10.1109/rtucon51174.2020.9316471
https://doi.org/10.1109/rtucon51174.2020.9316471
https://doi.org/10.1109/rtucon51174.2020.9316471
https://doi.org/10.1109/rtucon51174.2020.9316471
https://doi.org/10.1109/tie.2014.2321342
https://doi.org/10.1109/tie.2014.2321342
https://doi.org/10.1109/tie.2014.2321342
https://doi.org/10.1109/tie.2014.2321342
https://doi.org/10.1109/tie.2014.2321342
https://doi.org/10.1109/tie.2015.2410258
https://doi.org/10.1109/tie.2015.2410258
https://doi.org/10.1109/tie.2015.2410258
https://doi.org/10.1109/tie.2015.2410258
https://doi.org/10.1109/tie.2015.2410258
https://doi.org/10.1109/tie.2015.2410258
https://doi.org/10.1037/13620-000
https://doi.org/10.1037/13620-000
https://doi.org/10.1037/13620-000
https://doi.org/10.1037/13620-000
https://doi.org/10.1037/13620-000
https://doi.org/10.1037/13620-000
https://doi.org/10.1037/13620-000
https://doi.org/10.1016/j.tra.2021.07.012
https://doi.org/10.1016/j.tra.2021.07.012
https://doi.org/10.1016/j.tra.2021.07.012
https://doi.org/10.1016/j.tra.2021.07.012
https://doi.org/10.1016/j.tra.2021.07.012
https://doi.org/10.1016/j.tra.2021.07.012
https://doi.org/10.1016/j.tra.2021.07.012
https://doi.org/10.3390/su11041155
https://doi.org/10.3390/su11041155
https://doi.org/10.3390/su11041155
https://doi.org/10.3390/su11041155
https://doi.org/10.3390/su11041155
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1145/3368089.3417065
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1016/j.infsof.2020.106368
https://doi.org/10.1016/j.infsof.2020.106368
https://doi.org/10.1016/j.infsof.2020.106368
https://doi.org/10.1016/j.infsof.2020.106368
https://doi.org/10.1016/j.infsof.2020.106368
https://doi.org/10.1007/s40279-017-0716-0
https://doi.org/10.1007/s40279-017-0716-0
https://doi.org/10.1007/s40279-017-0716-0
https://doi.org/10.1007/s40279-017-0716-0
https://doi.org/10.1007/s40279-017-0716-0
https://doi.org/10.1007/s40279-017-0716-0
https://doi.org/10.1007/s40279-017-0716-0
https://doi.org/10.1109/zinc50678.2020.9161768
https://doi.org/10.1109/zinc50678.2020.9161768
https://doi.org/10.1109/zinc50678.2020.9161768
https://doi.org/10.1109/zinc50678.2020.9161768
https://doi.org/10.1109/zinc50678.2020.9161768
https://doi.org/10.1109/72.701181
https://doi.org/10.1109/72.701181
https://doi.org/10.1109/72.701181
https://doi.org/10.1109/72.701181
https://doi.org/10.1109/tvt.2018.2822762
https://doi.org/10.1109/tvt.2018.2822762
https://doi.org/10.1109/tvt.2018.2822762
https://doi.org/10.1109/tvt.2018.2822762
https://doi.org/10.1109/iccce.2008.4580573
https://doi.org/10.1109/iccce.2008.4580573
https://doi.org/10.1109/iccce.2008.4580573
https://doi.org/10.1109/iccce.2008.4580573
https://doi.org/10.1109/iccce.2008.4580573
https://doi.org/10.1109/ivs.2019.8813778
https://doi.org/10.1109/ivs.2019.8813778
https://doi.org/10.1109/ivs.2019.8813778
https://doi.org/10.1109/ivs.2019.8813778
https://doi.org/10.1109/ivs.2019.8813778
https://doi.org/10.48550/arXiv.1807.01726
https://doi.org/10.48550/arXiv.1807.01726
https://doi.org/10.48550/arXiv.1807.01726
http://dx.doi.org/10.1109/tenconspring.2017.8069981
http://dx.doi.org/10.1109/tenconspring.2017.8069981

46 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

Vehicles. 2017 IEEE Region 10 Symposium
(TENSYMP). Cochin, India: IEEE, 2017, pp. 1–4.

[27]	 R. Nabati, H. Qi. RRPN: Radar Region Proposal
Network for Object Detection in Autonomous
Vehicles. 2019 IEEE International Conference on
Image Processing (ICIP). Taipei, Taiwan: IEEE,
2019, pp. 3093–3097.

[28]	 H. Rashed, M. Ramzy, V. Vaquero, A. El Sallab,
G. Sistu, S. Yogamani. FuseMODNet: Real-Time
Camera and LiDAR Based Moving Object Detection
for Robust Low-Light Autonomous Driving. 2019
IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW). Seoul, South Korea:
IEEE, 2019, pp. 2393–2402.

[29]	 V.K. Kukkala, J. Tunnell, S. Pasricha, T. Bradley,
Advanced Driver-Assistance Systems: A Path
Toward Autonomous Vehicles. IEEE Consumer
Electronics Magazine, 2018, 7(5): 18–25.

[30]	 J. Yang, S. Liu, H. Su, Y. Tian. Driving Assistance
System Based on Data Fusion of Multisource
Sensors for Autonomous Unmanned Ground
Vehicles. Computer Networks, 2021, 192:
108053.

[31]	 J. Wang, L. Zhang, D. Zhang, K. Li. An Adaptive
Longitudinal Driving Assistance System Based
on Driver Characteristics. IEEE Transactions on
Intelligent Transportation Systems, 2012, 14(1):
1–12.

[32]	 X. Lin, D. Görges, S. Liu. Eco-driving Assistance
System for Electric Vehicles Based on Speed
Profile Optimization. 2014 IEEE Conference on
Control Applications (CCA). Juan Les Antibes,
France: IEEE, 2014, pp. 629–634.

[33]	 M. Hasenjäger, H. Wersing. Personalization
in Advanced Driver Assistance Systems and
Autonomous Vehicles: A Review. 2017 IEEE
20th International Conference on Intelligent
Transportation Systems (ITSC). Yokohama,
Japan: IEEE, 2017, pp. 1–7.

[34]	 V. Mosin, D. Durisic, M. Staron. Applicability
of Machine Learning Architectural Patterns
in Vehicle Architecture: A Case Study. In:
R. Heinrich, R. Mirandola, D. Weyns (Eds.),
Proceedings of the 15th European Conference on
Software Architecture (ECSA), Växjö, 2021. CEUR
Workshop Proceedings, 2021, Vol. 2978.

[35]	 K.M. Habibullah, J. Horkoff. Non-functional
Requirements for Machine Learning: Under
standing Current Use and Challenges in Industry.
2021 IEEE 29th International Requirements
Engineering Conference (RE). Notre Dame, IN,
USA: IEEE, 2021, pp. 13–23.

[36]	 P. Runeson, M. Höst. Guidelines for Conducting
and Reporting Case Study Research in Software
Engineering. Empirical Software Engineering,
2009, 14(2): 131–164.

[37]	 J.W. Creswell, J.D. Creswell. Research Design:
Qualitative, Quantitative, and Mixed Methods
Approaches. Thousand Oaks: Sage Publications,
2017, pp. 304.

[38]	 R. Rana. Software Defect Prediction Techniques
in Automotive Domain: Evaluation, Selection and
Adoption. PhD thesis, Chalmers | University of
Gothenburg, 2015, pp. 301.

[39]	 B. Settles. Active Learning Literature Survey.
University of Wisconsin-Madison, Department
of Computer Sciences, 2009. URL: http://digital.
library.wisc.edu/1793/60660.

[40]	 K.A. Patwardhan, G. Sapiro, M. Bertalmio. Video
Inpainting Under Constrained Camera Motion.
IEEE Transactions on Image Processing, 2007,
16(2): 545–553.

[41]	 M.J. Milford, G.F. Wyeth. SeqSLAM: Visual Route-
based Navigation for Sunny Summer Days and
Stormy Winter Nights. 2012 IEEE International
Conference on Robotics and Automation. Saint
Paul, MN, USA: IEEE, 2012, pp. 1643–1649.

[42]	 D. Cattaneo, M. Vaghi, A.L. Ballardini, S. Fontana,
D.G. Sorrenti, W. Burgard. CMRNet: Camera to
LiDAR-Map Registration. 2019 IEEE Intelligent
Transportation Systems Conference (ITSC).
Auckland, New Zealand: IEEE, 2019, pp. 1283–
1289.

[43]	 J. Sock, J. Kim, J. Min, K. Kwak. Probabilistic
Traversability Map Generation using 3D-LIDAR
and Camera. 2016 IEEE International Conference
on Robotics and Automation (ICRA). Stockholm,
Sweden: IEEE, 2016, pp. 5631–5637.

[44]	 P. Papadimitriou, H. Garcia-Molina. Data Leakage
Detection. IEEE Transactions on Knowledge and
Data Engineering, 2010, 23(1): 51–63.

[45]	 C. O’Neil, R. Schutt. Doing Data Science: Straight
Talk From The Frontline. Sebastopol: O’Reilly
Media, 2014.

[46]	 S. Alneyadi, E. Sithirasenan, V. Muthukkumarasamy.
A Survey on Data Leakage Prevention Systems.
Journal of Network and Computer Applications,
2016, 62: 137–152.

[47]	 J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson.
Understanding Neural Networks Through
Deep Visualization. 2015, arXiv preprint
arXiv:1506.06579.

[48]	 R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal,
D. Fink, O. Francon, et al. Evolving Deep Neural
Networks. In: R. Kozma, C. Alippi, Y. Choe, F.C.
Morabito (Eds.), Artificial Intelligence in the Age
of Neural Networks and Brain Computing, Ch.
15, Cambridge (MA): Academic Press, 2019, pp.
293–312.

[49]	 S. Abdelhamid, H.S. Hassanein, G. Takahara.
Vehicle as a Resource (VaaR). IEEE Network,
2015, 29(1): 12–17.

http://dx.doi.org/10.1109/tenconspring.2017.8069981
http://dx.doi.org/10.1109/tenconspring.2017.8069981
http://dx.doi.org/10.1109/icip.2019.8803392
http://dx.doi.org/10.1109/icip.2019.8803392
http://dx.doi.org/10.1109/icip.2019.8803392
http://dx.doi.org/10.1109/icip.2019.8803392
http://dx.doi.org/10.1109/icip.2019.8803392
http://dx.doi.org/10.1109/iccvw.2019.00293
http://dx.doi.org/10.1109/iccvw.2019.00293
http://dx.doi.org/10.1109/iccvw.2019.00293
http://dx.doi.org/10.1109/iccvw.2019.00293
http://dx.doi.org/10.1109/iccvw.2019.00293
http://dx.doi.org/10.1109/iccvw.2019.00293
http://dx.doi.org/10.1109/iccvw.2019.00293
http://dx.doi.org/10.1109/mce.2018.2828440
http://dx.doi.org/10.1109/mce.2018.2828440
http://dx.doi.org/10.1109/mce.2018.2828440
http://dx.doi.org/10.1109/mce.2018.2828440
http://dx.doi.org/10.1016/j.comnet.2021.108053
http://dx.doi.org/10.1016/j.comnet.2021.108053
http://dx.doi.org/10.1016/j.comnet.2021.108053
http://dx.doi.org/10.1016/j.comnet.2021.108053
http://dx.doi.org/10.1016/j.comnet.2021.108053
http://dx.doi.org/10.1109/tits.2012.2205143
http://dx.doi.org/10.1109/tits.2012.2205143
http://dx.doi.org/10.1109/tits.2012.2205143
http://dx.doi.org/10.1109/tits.2012.2205143
http://dx.doi.org/10.1109/tits.2012.2205143
http://dx.doi.org/10.1109/cca.2014.6981410
http://dx.doi.org/10.1109/cca.2014.6981410
http://dx.doi.org/10.1109/cca.2014.6981410
http://dx.doi.org/10.1109/cca.2014.6981410
http://dx.doi.org/10.1109/cca.2014.6981410
http://dx.doi.org/10.1109/itsc.2017.8317803
http://dx.doi.org/10.1109/itsc.2017.8317803
http://dx.doi.org/10.1109/itsc.2017.8317803
http://dx.doi.org/10.1109/itsc.2017.8317803
http://dx.doi.org/10.1109/itsc.2017.8317803
http://dx.doi.org/10.1109/itsc.2017.8317803
http://dx.doi.org/10.1109/re51729.2021.00009
http://dx.doi.org/10.1109/re51729.2021.00009
http://dx.doi.org/10.1109/re51729.2021.00009
http://dx.doi.org/10.1109/re51729.2021.00009
http://dx.doi.org/10.1109/re51729.2021.00009
http://dx.doi.org/10.1109/re51729.2021.00009
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://digital.library.wisc.edu/1793/60660
http://digital.library.wisc.edu/1793/60660
http://digital.library.wisc.edu/1793/60660
http://digital.library.wisc.edu/1793/60660
http://dx.doi.org/10.1109/tip.2006.888343
http://dx.doi.org/10.1109/tip.2006.888343
http://dx.doi.org/10.1109/tip.2006.888343
http://dx.doi.org/10.1109/tip.2006.888343
http://dx.doi.org/10.1109/icra.2012.6224623
http://dx.doi.org/10.1109/icra.2012.6224623
http://dx.doi.org/10.1109/icra.2012.6224623
http://dx.doi.org/10.1109/icra.2012.6224623
http://dx.doi.org/10.1109/icra.2012.6224623
http://dx.doi.org/10.1109/itsc.2019.8917470
http://dx.doi.org/10.1109/itsc.2019.8917470
http://dx.doi.org/10.1109/itsc.2019.8917470
http://dx.doi.org/10.1109/itsc.2019.8917470
http://dx.doi.org/10.1109/itsc.2019.8917470
http://dx.doi.org/10.1109/itsc.2019.8917470
https://doi.org/10.1109/ICRA.2016.7487782
https://doi.org/10.1109/ICRA.2016.7487782
https://doi.org/10.1109/ICRA.2016.7487782
https://doi.org/10.1109/ICRA.2016.7487782
https://doi.org/10.1109/ICRA.2016.7487782
http://dx.doi.org/10.1109/tkde.2010.100
http://dx.doi.org/10.1109/tkde.2010.100
http://dx.doi.org/10.1109/tkde.2010.100
http://dx.doi.org/10.1016/j.jnca.2016.01.008
http://dx.doi.org/10.1016/j.jnca.2016.01.008
http://dx.doi.org/10.1016/j.jnca.2016.01.008
http://dx.doi.org/10.1016/j.jnca.2016.01.008
https://doi.org/10.48550/arXiv.1506.06579
https://doi.org/10.48550/arXiv.1506.06579
https://doi.org/10.48550/arXiv.1506.06579
https://doi.org/10.48550/arXiv.1506.06579
http://dx.doi.org/10.1016/b978-0-12-815480-9.00015-3
http://dx.doi.org/10.1016/b978-0-12-815480-9.00015-3
http://dx.doi.org/10.1016/b978-0-12-815480-9.00015-3
http://dx.doi.org/10.1016/b978-0-12-815480-9.00015-3
http://dx.doi.org/10.1016/b978-0-12-815480-9.00015-3
http://dx.doi.org/10.1016/b978-0-12-815480-9.00015-3
http://dx.doi.org/10.1016/b978-0-12-815480-9.00015-3
http://dx.doi.org/10.1109/mnet.2015.7018198
http://dx.doi.org/10.1109/mnet.2015.7018198
http://dx.doi.org/10.1109/mnet.2015.7018198

47S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

[50]	 H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian,
I. Reid, S. Savarese. Generalized Intersection
Over Union: A Metric and a Loss for Bounding
Box Regression. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR). Long Beach, CA, USA: IEEE, 2019, pp.
658–666.

[51]	 F. Falcini, G. Lami, A.M. Costanza. Deep Learning
in Automotive Software. IEEE Software, 2017,
34(3): 56–63.

[52]	 M. Staron, W. Meding, P. Baniasad. Information
Needs for SAFe Teams and Release Train
Management: A Design Science Research
Study. In: A.K. Tarhan, A. Coskuncay (Eds.),

Joint Proceedings of the 2019 International
Workshop on Software Measurement and the
2019 International Conference on Software
Process and Product Measurement (IWSM
Mensura 2019), Haarlem, 2019. CEUR
Workshop Proceedings, 2019, Vol. 2476,
pp. 55–70.

[53]	 M. Rabe, S. Milz, P. Mäder. Development
Methodologies for Safety Critical Machine
Learning Applications in the Automotive
Domain: A Survey. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
Workshops (CVPRW). Nashville, TN, USA: IEEE,
2021, pp. 129–141.

http://dx.doi.org/10.1109/cvpr.2019.00075
http://dx.doi.org/10.1109/cvpr.2019.00075
http://dx.doi.org/10.1109/cvpr.2019.00075
http://dx.doi.org/10.1109/cvpr.2019.00075
http://dx.doi.org/10.1109/cvpr.2019.00075
http://dx.doi.org/10.1109/cvpr.2019.00075
http://dx.doi.org/10.1109/cvpr.2019.00075
http://dx.doi.org/10.1109/ms.2017.79
http://dx.doi.org/10.1109/ms.2017.79
http://dx.doi.org/10.1109/ms.2017.79
http://dx.doi.org/10.1109/cvprw53098.2021.00023
http://dx.doi.org/10.1109/cvprw53098.2021.00023
http://dx.doi.org/10.1109/cvprw53098.2021.00023
http://dx.doi.org/10.1109/cvprw53098.2021.00023
http://dx.doi.org/10.1109/cvprw53098.2021.00023
http://dx.doi.org/10.1109/cvprw53098.2021.00023
http://dx.doi.org/10.1109/cvprw53098.2021.00023

