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ABSTRACT

Automotive software uses new Machine Learning (ML) algorithms in increased number of 
systems, including active safety ones. However, with this new paradigm, new challenges arise 
in the domain of safety-critical automotive software. This article reports on a case study of 
the development of ML-based vision perception systems at one vehicle Original Equipment 
Manufacturer (OEM). We investigate how image-intensive perception systems are developed, 
both from the perspective of ML development processes and automotive software development 
processes. We conducted interviews with four engineers who were involved in the development 
process and subsequently performed thematic coding to extract key findings. We focus on 
how the teams are involved in the process of assuring the production quality of the Society of 
Automotive Engineers (SAE) level 3 functionality in modern passenger cars. We examine how 
the ML development process phases (e.g., data collection, model training, and model validation) 
align with the automotive software development phases (prototype development, software 
development, validation, deployment). The study found that the development process for  
ML-based vision perception systems in active safety allows for flexibility to adapt to changes 
in data collection, and integrates ML model development into the software development 
process. The investigated approach combines the Agile SAFe model, ML-model development, 
and the standard automotive V-process model. This study shows an example of combining these 
development processes using an industrial case study and presents the essential alignment 
points between different phases of these processes. The study also recommends best practices 
for developing similar systems in other companies.
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1. INTRODUCTION

Automotive software uses machine learning (ML) algo-
rithms in increasingly more functions, including active 
safety ones. Although the ML algorithms provide bene-
fits of being able to adapt to new situations and gener-
alize from the previous data, they also introduce new 
challenges [1]. One of these challenges is alignment 
of the structured automotive software development 
with its strict testing and validations phases with the 

iterative nature of the process of training-testing- 
validation of ML models. Another challenge is the fact 
that data collection has become an integral part of the 
automotive software development process [2].

Traditionally, the automotive software development 
followed the V-shaped process model, which was 
focused on the development of hardware, electronics 
and software in different stages. Recently, the automo-
tive development processes migrated towards agile 
software development – often following SAFe (Scaled 
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Agile Framework) [3] or A-SPICE (Automotive Spice) 
[4]. ML-based software development, on the other hand, 
follows a data science approach, with focus on iterative 
model training and validation [5,6,7]. The problem of 
aligning the two processes is even more evident in the 
development of systems that are somewhat evolution to 
previous functions – e.g. using a new kind of camera in 
low-speed maneuvering.

In the development of modern vehicles, with ML com-
ponents, these two processes need to be aligned as 
data collection and model development require several 
feedback loops before the software is ready for deploy-
ment. Software development (and product develop-
ment) teams need to understand how to combine the 
iterative machine learning model development with 
the iterative development of the automotive soft-
ware at large. In particular, they need to follow spe-
cific guidelines on handling the collected data (image 
data); the collected data are generally used to train and 
evaluate the ML model. These guidelines also ensure 
the quality of the collected data and the quality of the 
entire system under development. At the same time, 
ML engineers need to understand the software require-
ments for planning data collection activities before 
the models are architectured, trained and validated. 
Software requirements provide a clear roadmap for 
data collection. They specify the needed data (images) 
types, sources, and quality criteria. These requirements 
guide data collection efforts (e.g., driving scenarios), 
ensuring that the collected data aligns with the proj-
ect’s objectives and the needs of the machine learning 
models. Even seemingly routine tasks such as splitting 
data into training, testing, and validation sets must be 
carefully pre-planned. The data collection process can 
be time-consuming and resource-intensive, ensuring 
the accuracy of ML models [8] depends on the quality 
and correctness of the data.

Previously, this problem has been approached from 
either the data science perspective or from the perspec-
tive of software development. From the data science 
perspective, Rassõlkin et al. [9] studied creation and 
collection of data for autonomous vehicles (AV), find-
ing that the data collection and formatting are of crucial 
importance. Divya et al. [10] has recently proposed a 
list of instructions and guidelines for data collection for 
AVs. From the automotive software development per-
spective, Jo et al. [11,12] provided guidelines for design 
and development of distributed systems of autonomous 
vehicles, including the ML components.

Currently, combining these two processes is a challenge. 
This becomes clearer as companies work on developing 
systems in this area. Merging software engineering with 
machine learning lacks a standard approach, and it is 
affected by activities such as how systems are released 
and managed over time. For example, when existing 
systems in the market need updates, the OEM must 

figure out how to collect data and train algorithms to 
match the system’s changing needs.

Therefore, we set off to study how these two processes 
are combined by practitioners – or how professional 
software development organizations address this prob-
lem. We designed and conducted a case study at one of 
the vehicle OEMs. We interviewed engineers/developer/
testers involved in the development of image-intensive 
perception systems for autonomous vehicles with level 3  
SAE functionality1. To analyze the data obtained from 
the interviews, we performed thematic coding [13], 
which enabled us to extract pertinent findings.

We investigated how the development teams assure 
the production quality of the Society of Automotive 
Engineers (SAE) level 3 functionality in modern vehicles 
by addressing the following research questions (RQs):

1.  What are the best practices when combining 
machine learning model development with automo-
tive software development? – which we studied to 
understand how the company has integrated both 
processes.

2.  How do practitioners plan, execute and evaluate 
image data collection in automotive software devel-
opment? – which we studied to understand the data 
collection process and its quality evaluation.

3.  How do practitioners define and measure test/
train/validation data split to assure production 
quality of the entire system? – which we studied to 
understand how the data was split into training, 
validation, and testing sets; including the process 
of securing such properties as data distribution 
and preventing data leaks.

4.  What characterizes a good architecture of the ML 
model for such systems? – which we studied to 
understand how the model architecture is defined, 
and how the model was trained and validated. We 
operationalized it in two sub-questions: How do 
practitioners define the training process? and How 
do practitioners quantify the model’s performance in 
training, testing, and validation?

We conducted a case study of the development of 
one function called “low-speed maneuvering” (LSM) 
using fisheye cameras. This function required such 
dedicated cameras to be specifically used in scenarios 
where vehicles move slowly. According to our current 
knowledge, this function is the first of its kind in the 
automotive industry. The challenge of this develop-
ment is that image recognition, object detection and 

1 SAE is the Society of Automotive Engineers, an organization 
which defined five levels of autonomy of vehicles. Level 1 allows 
for using driver assistance systems, while level 5 allows fully  
autonomous vehicles without drivers. Level 3 allows conditional 
driving automation.
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semantic segmentations have not been studied or 
developed for this type of camera. Although a large 
extent of image recognition had been done before 
at the company, these new types of cameras provide 
images that have non-isotropic properties and there-
fore new models and new algorithms need to be pro-
vided. These new models, in turn, require new data 
and new data collection procedures from the field, 
annotations and quality assurance. We further iden-
tified that the model development phase is time-con-
suming and should consider primary attention from 
the development team. Additionally, our investigation 
revealed the alignment between the SAFe automotive 
development process and fits with the machine learn-
ing development process.

The outcomes of our case study make a valuable contri-
bution by showcasing the practical combination of the 
software development workflow for autonomous sys-
tems and the ML workflow. Our comprehensive analysis 
of various phases across both workflows has provided 
valuable insights into the interdependencies and over-
lap of phases inherent in the development of the LSM. 
Our study has revealed how these two processes have 
been aligned and how software development teams 
have collaborated with data collection teams to plan, 
execute and assess data collection activities meticu-
lously. We have observed that the data collection phase 
is carefully planned while allowing for some flexibility 
to accommodate all possible scenarios. Additionally, we 
have discovered that several phases entail a feedback 
loop to ensure the delivery of a high-quality product 
consistent with the classical development process of an 
autonomous system. 

The next section will discuss the related work. Further, 
we explore the study context and results in Section 3 
and 4, respectively. Finally, we illustrate our key find-
ings, limitations, and conclude our work in Section 5–7, 
respectively.

2. RELATED WORK

This section provides an overview of the latest work 
based on data handling and production quality analysis 
in autonomous vehicles.

The use of autonomous vehicles (AVs) in transportation 
has become an active area of research in recent years. 
Manivasakan et al. [14] conducted a case study on AV 
infrastructure requirements, formulating infrastruc-
ture change guidelines and prioritizing various safety, 
efficiency, and accessibility concerns in AVs. Their work 
provides a multi-model user comparison between 
autonomous and conventional vehicles in Australia. 
Jing et al. [15] conducted a survey study on AVs and 
found that knowledge about AVs and perceived risk are 
the two main potential obstacles for travelers to use 
AVs and semi-AVs. However, unlike these studies, our 

work emphasizes interviews based on the design of an 
intelligent infrastructure system in AVs, focusing solely 
on data handling.

Several studies have explored the optimization of ML 
algorithms for AVs. Kim et al. [16] presented an industrial 
case study on developing deep neural network (DNN)-
based object segmentation, which was found to be effec-
tive in improving the performance of ML-based AVs. They 
exploited the correlation between surprise adequacy 
and model performance, which enables the understand-
ing of model performance and data collection and helps 
to identify how much further training is required. This 
work provides valuable insights into optimizing the per-
formance of ML algorithms used in AVs. Fagnant et al. 
[17] proposed an agent-based model for shared AVs and 
found that they have the potential to replace traditional 
vehicles while adding up to 10% more travel distance. 
Although this work does not directly focus on develop-
ing ML-based perception systems for AVs, it highlights 
the potential benefits and challenges associated with the 
widespread adoption of AVs.

Our work builds on these studies by examining the 
ML workflow for AVs by conducting interviews with 
experts. The ML workflow consists of data collection, 
model training, and model validation. The training and 
evaluation phases of the ML workflow are computa-
tionally intensive [18], whereas the data collection and 
labeling are manual labor-intensive [19]. Therefore, our 
work investigates the data handling process in the ML 
workflow by interviewing engineers who were part of 
the development process and focuses on how the teams 
involved in the process assure the production quality of 
the SAE level 3 functionality in modern passenger cars.

In recent years, several works have been proposed to 
develop building blocks for end-to-end AVs. One such 
work proposed by Pranav et al. [20] is a real-time 
pedestrian detection system that employs a convolu-
tional neural network (CNN) [21]. The authors used 
public datasets and evaluated the performance of the 
proposed model in real-time video input. The model 
was compared with baseline methods and produced an 
accuracy between 96.73% to 100%.

Li et al. [22] developed a human-like driving system 
(decision-making system) for AVs to minimize the gap 
between human drivers and the self-driving system. 
They also used CNN, and the proposed model can detect, 
recognize, and abstract the given road input. The model 
calculates specific commands to regulate the vehicles.

Other recent works, such as lane detection [23,24,25], 
real-time pedestrian detection [26,27,28], and driving 
assistance systems [29,30,31,32,33], have also contrib-
uted to the development of high-quality image segmen-
tation systems in AVs.

Although our present work mainly focuses on inter-
views to develop an intensive image system for ensuring  
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product quality, these related works provide a solid foun-
dation for building autonomous driving systems that can 
detect and respond to road situations in real-time.

3.  STUDY CONTEXT & RESEARCH DESIGN

Adaptive cruise control, auto parking, or parking assist 
systems allow a certain degree of autonomous driving –  
driver assistance. These features require an enormous 
amount of data of the right diversity to either train an 
ML/DL model or to validate the traditional control-loop 
algorithm. The studied OEM collects a massive amount of 
data to develop such features. In this case study, we focus 
on low-speed maneuvering functionality based on dedi-
cated camera images. The data is collected in the form of 
sequences of images by driving in different geographical 
locations, weather conditions, and the time of the day.

Our study employs a qualitative interview approach to 
address our research inquiries and investigate percep-
tions and experiences in developing image-intensive  
autonomous drive systems. We have followed the 
Empirical Standard of the ACM SIGSOFT (tinyurl.com/
QualitativeSurveys). The demographic information of 

all the interviewees is shown in Table 1. Here, inter-
viewees E1 to E3 are responsible for the development 
process, whereas E4 is associated with the testing team.

Sampling. The sampling technique used here was based 
on selecting the experts who had the most experience 
with this type of development, based on our previous 
studies [34]. Table 1 shows the list of four interviewees, 
who were part of this study. The table also reports the 
designation, and year of experience. The last column 
states the responsibilities of the interviewee in the func-
tion development.

Data Collection. The data collection process involved 
conducting a series of interviews with participants. The 
interview questions asked were designed to facilitate 
the framing of research questions. It is important to 
note that sub-questions are not included in this sum-
mary. The interview questions and their mapping with 
research questions are presented in Table 2 to provide a 
comprehensive overview of the data collection process.

Pre-Testing. Each interview was recorded and then 
transcribed. The transcriptions were shared between 
the research team members, while the recordings were 

S. No Designation Experience (Years) Responsibilities

E1 Data Scientist ≥20 •	 data selection
•	 annotation guidelines and annotation process
•	 end-to-end responsibility to train and evaluate the models
•	 defining the collection requirements
•	 controlling the collection process
•	 quality assurance, and
•	 generating insights

E2 Senior Developer ≥10 •	 imaging pipeline development and hyperparameter tuning
•	 retrieving and processing raw images
•	 neural network development
•	 inference from camera images on target devices
•	 calculation and monitoring of quality KPIs for the perception model

E3 Senior Developer N/A N/A

E4 Technical Expert testing of 
active safety function

≥20 •	 function testing
•	 reporting back detection
•	 testing collision avoidance functions

Table 1. Demographic details. Note: We do not have the demographic information of E3 as they are no longer part of this study.

Interview Questions Research Questions

Q-1. What is basis for data collection for function development? RQ-1,	RQ-2

Q-2.	What	is	the	basis	for	choosing	a	specific	model	architecture	for	specific	function? RQ-1, RQ-4

Q-3. How is the data splitting defined and performed? RQ-1, RQ-3

Q-4. How are KPI for model performance constructed and monitored? RQ-1, RQ-3

Q-5. How is the training process defined and performed? RQ-1, RQ-3

Q-6. How is the validation process defined and performed? RQ-1,	RQ-2

Q-7. How is the production model finalized? All

Q-8. Are the any mechanisms to control the quality of the data during the run-time? All

Table 2. Mapping of interview questions to research questions.

https://tinyurl.com/QualitativeSurveys
https://tinyurl.com/QualitativeSurveys
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Figure 1. Overview of the thematic codes used for the development of low-speed maneuvering (LSM).

kept at the company promises, being accessed only by 
the interviewer (as per consent with the interviewees). 
After transcribing the interviews, thematic coding was 
conducted by one of the authors, following established 
methods [13,35]. The resulting codes and themes were 
shared with the other authors, and a case study was 
then performed based on the coded data.

Data Analysis. The collected data were qualitative; 
therefore, we used thematic analysis as a data analysis 
method [36]. We used a mixed form of coding, where 
we started with several high-level codes based on our 
RQs, then refined and adapted these codes when going 
through the transcripts [37].

4. RESULTS

In order to provide the context to the results, first we 
provide qualitative codes to provide the overview, then 
we start by presenting how the automotive software 
development and the ML model development are com-
bined in the studied organization. Then, we present the 
answers to the four research questions in our study, as 
discussed in Section 1.

4.1. Overview: Thematic Coding

Our analytical process involved identifying six high 
levels thematic codes based on the data gathered from 
the interviews conducted during the development of 
the LSM, as illustrated in Fig. 1. These high-level codes 
are 1) Requirements: Defining the specific function-
alities and objectives of the low-speed maneuvering 
function using fisheye cameras in automotive scenarios.  

It includes data, owner, function, and KPI requirements. 
2) Data Preparation: Collecting and curating rele-
vant fisheye camera images and corresponding object 
detection annotations for training and evaluation.  
3) Preprocessing: Developing and implementing algo-
rithmic components to process fisheye camera images, 
feature distribution, and data splitting. 4) Deployment: 
Integrating the developing function into the automotive 
system, considering safety checks, quality assurance, 
and simulation. 5) Model Architecture: Designing and 
selecting different architecture also includes training. 
6) Performance Evaluation and Fine-Tuning: Assessing 
the function’s effectiveness through KPIs and iteratively 
refining the algorithm based on evaluation outcomes. 
It includes manual analysis, KPI discussion, testing 
& validation, and hyperparameter tuning. The figure 
presents an overview of these codes. These high-level 
codes are further divided into sub-codes. For instance, 
Preprocessing code is divided into Feature  
distribution, Data splitting, and Feature 
selection, depicted in purple boxes. Notably, we 
observed that these high-level codes align with the dif-
ferent phases of the classical ML workflow, as depicted 
in Fig. 2.

4.2.  What Are the Best Practices When  
Combining Machine Learning Model  
Development With Automotive  
Software Development?

Figure 2 shows the two different workflows: the top 
figure indicates the typical workflow of software 
development for automotive systems, whereas the 
bottom figure indicates the ML-based workflow. The 
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Figure 2. Software development workflow for automotive systems [38] and ML workflow. The top of the figure is the development 
phase of a software project using the V-model at the OEM. Recognizing certain overlapping processes, we’ve categorized these phases 
into A, B, C, and D (top of the figure). These signify the Software Requirements, Design, Testing, and Functionality stages, respec-
tively.	Now	each	phase	is	divided	into	small	states	from	S1	to	S7.	Software	testing	overlaps	with	design,	starting	between	S1	and	S2	
and continuing until S4. After S4, the system undergoes calibration and optimization, which also overlaps with the software update 
phases. The nine phases of ML workflow. Data collection planning, collection, cleaning & annotation are data-driven phases. Func-
tional requirements, model architecting, training, performance evaluation, testing & validation and deployment are model-oriented. 
The backward arrows are the feedback from the current phase. The smaller arrow indicates training model may go back to model 
architecting. The bigger arrows denote the current phases that may go back to any of the previous phases. The motivation for the ML 
workflow is from Amershi et al. [5].

software development process for automotive systems 
at the studied OEM follows a SAFe agile development 
model2, which is combined with the traditional (to the 
automotive domain) V-model.

The automotive software development process, altho-
ugh iterative, still requires certain milestones – S0, 
S1, ..., S7 – as shown in Fig. 2. High-level requirements 
are often specified at the beginning of the project and 
refined in the course of the software development (e.g., 
by defining user stories to be developed per program 
increment and per sprint). Even testing is performed in 
each phase as shown in Fig. 2 and then more intensified 
towards the end.

The functional requirements of the ML workflow fall 
under the requirements phase of the V-model workflow 
of software development. First, there is a data collection 
planning phase, where requirements for data are spec-
ified, e.g., the geographical location, time of day, driving 
scenarios, number of data points. These requirements 

are then used in the data collection phase, where a ded-
icated team drives in a dedicated fleet of cars to collect 
the data to fulfill these specifications. After the data col-
lection phase, there is a need to clean and label data, 
remove noise, and extract features for the ML model 
training phase – model architecting phase. The data 
collection planning and data collection phases of ML 
workflow falls within the system design phase of the 
V-model. The model architecting phase includes feature 
engineering and initial model selection. This phase is 
followed by the training phase. The training data set is 
inputted into the learning model of the selected archi-
tecture to train the model; there is a direct feedback loop 
between the training phase and the model architecting 
phase, to change the selected features or model if the 
model training metrics (or Key Performance Indicators) 
are not sufficient.

We found that data cleaning & annotation phase of the ML 
workflow falls under system design workflow of V-model. 
According to the study, ML model architecting, and ML 
model training phases of the ML workflow fall into the 
implementation & unit testing phase of the V-model 2 https://www.scaledagileframework.com/

https://www.scaledagileframework.com/


35S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

workflow. Furthermore, the integration & integration 
testing phase covers the performance evaluation phase.

Figure 3 shows the process workflow for developing the 
ML-based vision software at the OEM who also works 
with different suppliers who can collect the data and/
or develop the entire ML model. The numbers (from 1 
to 7) in the figure state the time the process steps takes 
place. If the supplier is involved, the function owner 
from the OEM provides the functional and non-func-
tional product requirements (process step 1) to the 
development team at the OEM and its supplier com-
pany, i.e., tier 1 supplier (T1-S). The software develop-
ment team, also known as the OEM team, is composed 
of several sub-teams that work together to develop the 
products. These sub-teams include the function devel-
opers, the data collection team, and the testing and vali-
dation teams. The function development team furnishes 
the data collection team (process step 2, from function 
developer to data collection team) with guidelines and 
requirements for data collection. Specific process steps, 
for instance, process step 3, are presumed to occur 
concurrently. Due to this reason, they share identical 
process step numbers. However, due to dependencies 
from the T1 supplier, pinpointing the sequence in which 
these steps occur can be challenging.

T1-S can share their collected data with the software 
development team at the OEM (process step 4, from 
T1-S to function developer). T1-S trains a model using 
their own collected data for low-speed maneuvering. 
The software development team trains a new model 

(process step 4, from function developer to model train-
ing) using data collected by the OEM’s data collection 
team and also tries existing baseline methods for similar 
problems to understand how the ML model performs in 
relation to the state-of-the-art. The software develop-
ment team also takes inspiration from T1-S model (pro-
cess step 4, from T1-S to function developer) to increase 
the performance of their model. The research team at 
the OEM also gives feedback and suggestions to make 
the model more efficient and robust. After achieving the 
target performance, the software development team 
transfers the developed functions to the testing and val-
idation team at the OEM (process step 5). Testing and 
validation teams perform required test cases in different 
environments (process step 6). After acceptance from 
the testing teams, the software component is deployed 
to the vehicle (process step 7). 

Based on the interviews, we can summarize the best 
practices while developing such ML-based projects in 
Table 3, which illustrates the phases of ML-based func-
tion development, the recommended practices, rationale 
behind them and the related V-model or SAFe phase.

4.3.  How Is Data Collection Planned, Executed 
and Evaluated for Automotive Software 
Development?

To answer this research question, we have divided this 
section into two distinct subsections: data collection 
planning & execution, and data evaluation.

Figure 3. Excerpt from the ML workflow at the OEM for the studied function. The process is organized into seven steps. Note: Few of 
the process steps are executed simultaneously and therefore they are designated with the same process number.
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Phase Activity Recommended Practice Rationale
Fall Under 
V-Model Phase

Data 
collection

Planning Plan data collection based on:
•	 geographical location,  

weather conditions, driving  
surface, scenarios, corner cases

•	 obstacles and team safety
•	 spread/quality of data
•	 potential data similarity/leak

When planning the data collection, 
the software development team 
should explicitly state which 
requirements are essential for their 
process, i.e., how they will train their 
models.

System design

Data 
collection

Execution Collecting data based on:
•	 set data collection goals, & plan,
•	 cover all scenarios,
•	 high-quality image data, and
•	 simulation for rare scenarios.

Feedback loop from the software 
development team to collection to 
adapt plans according to need. The 
team analyzes the data and tries to 
cover all possible real-life scenarios. 
The team will also simulate data for 
rare scenarios.

System design

Data cleaning 
& annotation

Organizing,  
removing noise,  
categorizing &  
labeling images

Examine the collected images  
based on: 
•	 each frame of collected data,
•	 categorizing images based on  

scenarios, and
•	 annotate all the frames based on 

scenarios.

Based on annotated data, the 
software development team analyzes 
all frames. There is a fixed set of 
scenarios defined by them for 
metadata. Annotated frames are 
passed through system generated 
checklist to avoid inconsistency.

System design

Model 
architecting

Feature engineering  
and model selection

Based on existing methods, try to  
focus on: 
•	 extract the relevant features,
•	 remove redundant features,
•	 data augmentations for corner  

cases, and
•	 try simple and small model and  

compare to baseline models.

The function development team 
crops these images before the model 
training. They preprocess to match  
the training features. The team also 
attempted to perform experiments 
over existing used models using the 
same code base.

Implementation 
& unit testing

Training 
model

Training, and  
tuning

When training, remember to  
manner:
•	 train the different models in  

parallel, note the performance,
•	 track the performance in rare  

scenarios,
•	 monitor potential presence of the  

data leakage problem, and
•	 tune the model to increase the 

performance.

The software development  
team trains the few models  
in parallel and tunes the  
model hyperparameters.  
They noted the performance  
of each model while tuning  
to understand when the  
model performs well and  
where new training/data  
collection should be done.

Implementation 
& unit testing

Performance 
evaluation

Tuning and  
optimizing

Based on selected models, follow:
select KPIs based on  
requirements for data and for  
the product performance (function 
performance),
compare the performance using  
KPIs, and
tune and optimize to reach the  
required performance.

The software development  
team compares the performance 
of different models and optimize 
the best one. They consult with the 
research team to achieve the desired 
performance.

Integration 
& integration 
testing

Testing and 
validation

Function  
testing

Keep in mind to:
executing all test cases,
testing of legal requirements,
threshold rating,
function owner’s performance 
requirement, and
safety & security standards,  
and ethics

The testing team ensures compliance 
with safety and security standards by 
conducting comprehensive functional 
testing of the system using a variety 
of test cases and simulations, 
including rare scenarios. They rate 
the model’s performance based on 
their assessment of the functional 
requirements and test results.

System testing

Model 
deployment

Deployment Model deployment focus on:
•	 track the action of the functions  

in all scenarios,
•	 note the deviation for all cases,
•	 test on the virtual environment to 

generate emergencies or scenarios.

Deploy the developed function 
in testing vehicles. The testing 
team notes the performance in all 
scenarios. They prepare the report 
and submit it to the development 
team.

Acceptance 
testing

Table 3. Phase illustration and recommended practice. 
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4.3.1. Data Collection Planning & Execution

The data collection process is thoroughly planned, and 
the data collection team has predefined guidelines for 
how to plan and collect the data. The team also defines 
the data collection goals (i.e., when the data collec-
tion can be considered as finished). The guidelines are 
based LSM function that needs to be developed, geo-
graphical area by the different times of the year. For 
instance, during winter, few places in a city, snowfall 
is regular, and roads are covered with dense snow, 
and some other types of obstacles/driving situations. 
Generally, such guidelines are also motivated from 
other developed functions. Based on these plans the 
driving routes are created to cover the requirements 
for the data to be collected for the developed function 
(and the required scenarios). The single team setups 
all the routes for the vehicles by combining require-
ments from different functions and teams; these teams 
can work on different functions – it is important to 
optimize the data collection process and collect data 
from multiple processing functions and vehicle sen-
sors simultaneously.

Sometimes, depending on the time of the year, it may 
not be easy to fulfill certain requirements (e.g., collect 
winter data during the summer). The data collection 
team tries to follow the guidelines, due to the driving 
situations, the data collection team may decide to devi-
ate from the plan due to the team’s safety. On the other 
hand, the collection team can deviate from the proce-
dure to collect important data based on driving situa-
tion at hand, because in plan-driven, they can only cover 
a finite number of real-life scenarios and therefore cer-
tain degree of flexibility is needed.

The data collection phase commences when the data 
collection goals are achieved. One of the goals is the 
amount of data to be collected – measured in the number 
of images or number of driving scenarios, geographi-
cal locations, or other (defined by the team). Although 
to train a deep learning model requires a significant 
amount of data, it is in practice difficult – collecting of 
sufficient amount of data with the desired variability 
can be challenging. Therefore, the data collection team 
discusses the challenges with the software development 
team before and during the collection process to fulfill 
the data quality requirements as adequately as possible 
without unnecessarily postponing the software devel-
opment process. The development team is responsible 
for requesting data recollection and stopping the data 
collection process. According to the development team, 
the following are the attributes of high-quality image 
data (valid for all scenarios):

1.  High resolution
2.  Annotations
3.  Diversity of the dataset
4.  Good spread
5.  Minimum noise

These attributes are combined with scenario-specific 
attributes. For example, for some scenarios it may be 
important to use data of varying quality to be able to 
assess the operational limits of the developed functions. 
It can be the case that the OEM also collects data with arti-
ficially aged cameras to collect blurry images, so that the 
function can operate even later in the vehicle’s lifecycle.

During the period of data collection the team needs to 
address a number of challenges. The data collection 
needs to cover several possible weather conditions – 
summer, autumn, winter and spring – which requires 
calendar time. Therefore, the planning needs to take 
into consideration which requirements are covered 
under which circumstances. In order to be able to intro-
duce new scenarios, when the model training requires 
that, a significant amount of meta-data is collected. The 
meta-data contains such attributes as the geographical 
position, elevation, weather or time of day. It is used to 
filter the data when training and testing the models.

Since it is both the T1-S supplier and the OEM who col-
lect the data, the interplay between these two teams is 
well-defined. In general, the OEM puts the requirements 
on the data collection, but for the T1-S supplier has a 
degree of flexibility related to both the specifics (e.g., the 
drivers may see a specific, interesting driving situation 
to capture) and technical set-up (e.g., the ability of the 
cameras to capture a specific situation or the need to 
re-capture a rare driving situation). The OEM defines 
true positive data, which are ranking scenarios for the 
Euro NCAP3.

In summary, according to interviewee E1, there exists 
a pre-planned approach that emphasizes adherence to 
guidelines for data collection, with the primary focus 
on data collection for scenario in which E1 work with. 
Occasionally, the guidelines are established by E1, while 
the route is determined by function owner analysis. 
Guidelines are formulated based on the requirements. 
E2 echoed similar sentiments, highlighting an orga-
nized approach with occasional spur-of-the-moment 
decision-making. However, E3 mentioned that the sup-
plier team is also collecting data for the same function 
development.

In case when the real data cannot be collected, the teams 
create datasets using simulation environment and then 
annotate them to ensure that the model is trained 
properly even if real-world data is not available at the 
moment. To achieve the correct/required data distri-
bution, they categorize scenarios into two sections, a) 
worst-case scenarios and b) best-case scenarios, as 
mentioned by the second interviewee (E2):

• So we will create data set and annotate it to get the 
detailed performance figures on that. And we are also 
looking at getting the real-life scenarios, select it as 

3 https://www.euroncap.com/en

https://www.euroncap.com/en


38 S.K. Pandey et al. / Journal of Software Engineering for Autonomous Systems / Volume 1, Issue 1–2, December 2023, Pages 29–47

some kind of criteria, like we have some worst-case sce-
narios and the best-case scenarios.

Corner case scenarios are challenging to collect and 
handle in real life, such cases that need to be available 
in the data so that the model can learn from those sce-
narios. For example, when the bike is loaded on the 
moving truck, it would be confusing for the model to 
detect the real moving object on the road (i.e., truck, not 
bike). From the image-intensive system perspective, the 
abrupt change in lighting intensity is still rare compared 
to normal low-speed maneuvering driving without such 
changes. These corner cases are the ones that are most 
often simulated although, in the beginning, the team 
leader instructs the team members about how to collect 
corner case scenario. 

Another scenario is the low-speed maneuvering in 
urban and rural areas. T1-S describes their plan for such 
cases, based on common space, the OEM’s software 
development team puts their requirements, e.g., how to 
drive, what to cover, etc. Otherwise, the T1-S team fol-
lows their own priorities and agenda, to optimize the 
overall data collection process. The third interviewee 
(E3) stated that:

• In the beginning we’ve been instructing people how to 
collect those kind of corner case scenarios to cover, for 
example, trolleys and these kind of things a bit more.

• So, it’s a communication part that they tell us, like, what 
kind of things they plan and then there is a common 
space where we put the requirements on them, like how 
to drive, what to cover and so on.

4.3.2. Data Evaluation

Function development team mainly ensures the quality 
of collected, and annotated datasets, i.e., when the data 
is being prepared for the training/test/validation pro-
cesses. To ensure data quality, the development team 
analyzes one frame per second, and then based on the 
metadata, they identify the relevant samples for both 
the training, test and evaluation data. In this stage, the 
metadata about the geolocations, time of day, etc. is only 
one parameter, other parameters can be such metadata 
as status of the vehicle, e.g., sudden brake when revers-
ing. T1-S employed software, the name of which remains 
confidential due to a non-disclosure agreement, to 
index these frames. Following this, a framework was 
applied to execute the indexed frames, serving as a cura-
tion framework to assess these frames’ quality, and then 
they perform active learning [39] to ensure it.

There is a manual review of sample frames, which is 
performed by a different (independent) team (X team). 
Before the data is indexed into an internal database 
they perform automatic checks for the metadata, such 
as, calibration correctness, GPS positioning accuracy, 
etc. Both the development team and team X assess 

the quality of data obtained from various sensors. For 
instance, if the camera’s positioning is incorrect due to 
any reason, the corresponding data is unusable and dis-
carded. The function development team also aggregates 
all logs during each session of data collection. T1-S also 
analyzes each log, which is a long, but necessary pro-
cess to ensure data quality and ultimately the product 
quality. The development team inspects/analyze and 
discusses the model performance and KPI reports reg-
ularly to ensure data quality. This information helps to 
identify missing information in the data set. Finally, the 
development team mainly focuses on the missing sce-
narios, so the team could achieve high accuracy predic-
tion results. The development team defines the required 
prediction performance.

To annotate data, the development team selects each 
frame in such a manner, so that they can get the best 
match between cameras [40,41] and LiDAR4 (Light 
Detection and Ranging) sweep. It is the one of the best 
way for annotation [42,43] and for any camera tooling 
activities. The frames that are indexed into internal 
database. Similarly, for T1-S, there is another database 
and the T1-S has a curation framework, which runs over 
these frames.

In addition to the predefined data requirements, the 
both T1-S team and function development teams use 
active learning to ensure that the quality of the data set 
is as optimal as possible. The score generated by the 
active training model for each frame is noted, based on 
the scores, each scenario works on the metadata, and 
then frames are annotated based on scenarios.

Next is the data splitting into train/test/validation 
process, which is executed by selecting the frames in 
the distribution to match the project definition for the 
annotation. For example, for the camera the function 
development team defined that they want to have 
the majority of the frames from the scenarios when 
the drivers in the vehicle marked that they are close 
to the obstacle. These frames are considered in the 
first place due to their importance for safety testing. 
However, if there are insufficient number frames for 
the scenarios in the project, then they use frames of 
different scenarios, for example, dense city (when 
the vehicle was driving through a highly populated 
area). They define different countable scenarios in the 
project and follow their priority order, For example, 
1) when driving close to the obstacles, 2) driving in 
a dense city, i.e., driving in a highly populated area. 
The final definition of curation scenario allows them 
to set the ratios of each scenario they wanted to get, 
and they will possibly never get perfect ratios because 
they have a finite number of frames with given meta-
data attributes, but that is expected.

4 https://en-academic.com/dic.nsf/enwiki/26692

https://en-academic.com/dic.nsf/enwiki/26692
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In the context of software development in such projects, 
metadata can be used to describe individual frames 
of data, with specific details depending on the project 
in question. For instance, in the case of semantic seg-
mentation, each pixel in a frame is labeled with a class, 
and different classes may have different attributes and 
parameters depending on the types of objects present 
in the frame. If a particular class is not available, each 
object in the frame must be tested independently for 
semantic segmentation and object detection. This level 
of detail allows the development team to accurately 
analyze and annotate the data, enabling them to create 
more effective algorithms and models for their project.

They also consider the vehicle with or without a rider. 
For example, a bike can be just standing on the side 
of a road, or someone can be riding a bike (making it 
a vulnerable road user), these are considered different 
attributes or parameters of the same class. They had 
an automatic tool for day/night lighting and weather 
conditions, which help to create different weather con-
ditions for a given instance; they also annotate those 
created instances. First interviewee (E1) during inter-
view mentioned that:

• So, we have the semantic segmentation when we anno-
tate the per pixel level each class. And we have the 
object detection, so nothing special there. But there is 
a plenty of classes and each of those classes have plenty 
of parameters.

The segmentation network can recognize a number of 
areas, e.g., drivable surface, vulnerable road users. To 
ensure the data quality, they analyze different numbers 
of vulnerable & non-vulnerable objects, types of cars, 
and all these are in the train set.

Industrial recommended practice and rationale for data 
collection planning, data collection, and data cleaning & 
annotation are shown in the first three rows of Table 3.

Summary: The data collection process was thoroughly planned 
based on the function requirements. The guidelines for data 
collection are also based on weather conditions, geographical 
locations, and other obstacles and even spontaneous actions (to 
capture specific situations). Quality of the data is ensured by two 
teams – one at the OEM and one at the T1-S supplier.

4.4.  How Is Data Splitting Defined in Order to 
Assure Production Quality?

Data splitting plays a crucial role in training ML models. 
It prevents overfitting, aids in monitoring perfor-
mance, fine-tuning, ensuring stability, robustness, and 
other essential aspects of the model. Therefore, it plays 
a crucial role to build an AI-based system in general, 
and in the automotive software in particular. The major 
challenge in the automotive image analysis is that the 
data needs to be split based on its metadata (e.g., geo-
location) and based on image similarity (e.g., highways 

are very similar regardless where the image is taken). 
The metadata for the collected data contains several 
salient pieces of information about the data. Function 
developers exploit this information for function devel-
opment. The collected metadata contains for instance 
(but is not limited to), information about weather con-
ditions, time of the year, sun elevation, geographical 
location, road conditions, traffic conditions, etc. They 
also considered annotations (semantic segmentation 
and object detection) as metadata.

During the interview, E1 stated their approach to cov-
ering feature distribution by incorporating proxy fea-
tures. However, E2 expressed difficulty in achieving 
optimal results when splitting data based on classes. 
Additionally, E3 noted that due to varying geoloca-
tions, time periods, and other factors, there exist 
multiple methods to effectively separate, train, and 
evaluate data.

E1 conveyed that their data lacks a comprehensive 
spread and does not cover all scenarios; hence they 
often rely on metadata. They ensure quality assurance 
through post-annotation checks and camera quality at 
a fixed pixel level. To enhance data quality, they actively 
communicate with suppliers. In order to measure the 
quality of data, E1 employs KPIs. E2 mentioned that 
sparse data in their training process, along with vary-
ing annotations for different classes, posed several 
challenges, such as imbalanced classes, overfitting, and 
difficulty in selecting relevant features. E3 highlighted 
their usage of segmentation networks for some sce-
narios, where the data mostly comprises roads with no 
objects. To ensure better distribution, they mentioned 
that they need to focus on analyzing vulnerable objects 
and applying sampling methods. Similar to E1, E3 also 
employs KPIs to measure data quality.

Regarding data sampling, E1 mentioned their splitting 
approach based on classes, vulnerable vehicles, and 
applying frame-based splitting. They also utilize meta-
data for this purpose. E2 provided little information on 
this topic. At the same time, E3 mentioned their use of 
curation frameworks and T1-S using a tool for it.

The data collection team covers as many scenarios 
as possible in the train set. The developer team splits 
their dataset into training and evaluation sets based 
on metadata to have the same distributions of features 
(e.g., availability of the same objects or geolocation). For 
instance, the team splits the data based on geograph-
ical location. This split prevents the situation when 
they have images from completely different geograph-
ical locations in the training set (e.g. snowy mountain 
regions) compared to the evaluation set (e.g., summer 
setting with open lands), which can affect the perfor-
mance of the model and evaluation results.

Although there is no calculation of image similarity on 
the pixel level, the geolocation is used as a proxy for the 
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image similarity measurements. The assumption is that 
the images from different times or locations are differ-
ent. The data is also complemented with proxy features 
to meet the real scenarios in the data, by defining grids 
for data quality. Time and geolocation are the proxy fea-
tures; they are the features of the data (images) that are 
used as proxies for calculating image similarities.

One specific aspect of data splitting, which is import-
ant for production-grade ML software is the reduction 
(or complete removal) of data leaks. A data leak [44] is 
considered when the same (or equivalent) data point is 
used both in the training and in the test/validation data 
set. According to Schutt et al. [45], a model can be at 
risk of producing the data leak problem at any point in 
time. A developer can build a model that works well in 
a “clean” dataset, but will completely fail when applied 
to a real-world situation. Our first interviewee stated:

• Our definition was a proxy for the actual data leak. 
How else would you prevent the data leak from the like 
machine learning meaning? We need to have an image 
similarity model which would, try to prevent the actual 
leak, because we work with the vision data.

The OEM team defines data leak in terms of time, geo-
location, driving situation and image similarity. The 
data leaks when similar frames in the training set were 
used for the evaluation of the model – e.g., consecutive 
frames from a sequence of images. Image similarity 
measure [46] can automatically calculate the presence 
of data leakage. But image similarity would be different 
for different functions, so they rely on visual perception. 
Therefore, time and geolocation are added to the images 
as a proxy feature to tackle data leak. A dedicated tool 
has been developed for that purpose.

To verify the scenarios in the similar images, OEM team 
also conducted experiments based on image embed-
ding. They wanted to train a model for a specific task and 
extract the embedding of the images. To find similarity 
between scenarios such as, 1) a car at the bus station, 
2) another car at a different bus station. So the embed-
ding vector of these two images should be close to each 
other in an n-dimensional feature space. They also con-
sider the concept of information leak, such as during the 
night, there are fewer types of particular objects, and 
during the day, there are more objects of another type.

Summary: The OEM team performs data splitting to meet the 
requirements and all possible scenarios. The team also adds a few 
proxy features in the train set to add rare scenarios. They split 
the data into train and validation sets based on multiple criteria. 
They also consider the concept of data leak and information leak.

4.5.  What Characterizes a Good Architecture 
of the ML Model for Such Systems?

This RQ reports the model selection, training, and 
evaluation process. We organize them into three 

sub-research queries that address the model’s selec-
tion, training process, and evaluation in terms of key 
performance indicators (KPI).

4.5.1. How Is the Model Architecture Defined?

The first objective is to train a small and fast learning 
model in order to understand the limitations of the data. 
The function development team and T1-S both design 
their first models as small and simple. They attempt 
to perform experiments on previously used models (if 
possible), using the same code base. To increase the 
accuracy of the models another team member from the 
OEM experiments on other state-of-the-art architec-
tures. They observed that the impact of data is higher 
than the architecture. The team has also observed that 
the order in which datasets are used in the training pro-
cess can lead to different results.

The team compares all models based on performance 
and minimizes the deep learning network [47,48] 
(number of layers, number of nodes, parameters, etc.) 
in order to ensure that it can be used effectively on com-
putationally limited resources in the car [49]. After ana-
lyzing all the deep learning network architectures, they 
list all types of suggestions to pursue. While evaluating 
the networks, they eventually fine-tune the different 
hyperparameters based on performance and easiness of 
the training process. Our first interviewee stated about 
model architecture and training process in the inter-
view are:

• But the first approach was just to use whatever we have 
there in the zoo. How we know that the neural network 
architecture is good for the particular task? We know 
that there is no better thing? For the image size, batch 
sizes for training and so on, that was something we 
have tuned ourselves.

There are several challenges that the software devel-
opment team faces while developing the entire system. 
For instance, the image is often defined in terms of 
certain questions e.g., “the object properly visible”, 
“how far the object is”, “what is the field of view”. The 
capturing cameras are also limited in the number of 
pixels, capturing objects fairly accurately up to a cer-
tain distance. The team precisely defined the size of 
the input image.

Our recommended practice and rationale for model 
architecting are shown in the fourth row of Table 3.

Summary: Both OEM and the T1-S start with a simple and fast-
learning model. Initially, they employ NN and deep NN, then 
they perform the fine-tuning process. Simultaneously, another 
team at the OEM conduct experiments on baseline methods 
and different state-of-the architectures for comparison. The 
networks are then minimized in terms of number of layers, 
parameters, and nodes in order to ensure that they can be 
executed on limited computing resources in vehicles.
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4.5.2. How Is the Training Process Defined?

The objective of this sub-RQ is to explore various 
aspects of the training process for the development of 
the vision perception system, as perceived by both the 
OEM and T1-S. E1 interviewee state that, it is recom-
mended to utilize established baseline neural network 
models to extract embeddings of objects. E2 mentioned 
that T1-S additionally trained a parallel model using 
their collected data on various environments: they also 
helped in the tuning and training process in multiple 
environments. They performed fine-tuning it for opti-
mal performance through weight and bias optimization. 
They also meticulously adjusted the hyperparameters 
of different models. E3 stated that, it is crucial to explore 
state-of-the-art architectures that aim to minimize the 
number of parameters while still achieving optimal 
results. Additionally, both E1 and E3 said that the train-
ing from scratch may require significant manual work 
and never-ending training, which can be mitigated by 
employing parallel model training and continuous feed-
back with the research team. Our third interviewee 
mentioned the following about training process:

• When it comes to the from scratch training of the net-
works, it’s a lot of manual work finding the best things 
there. And there are methods to kind of try where you 
can do an automatic optimization where there are opti-
mizers and where there are parameters and number of 
epochs and so on.

The OEM finished the training based on evaluating loss 
function and the KPIs. The OEM uses a specialized inter-
nal tool to assess predefined performance levels based 
on hyperparameters. This tool evaluates trained models, 
but we can’t disclose its name due to confidentiality 
agreements. If the team wants to test over internal tool, 
then they predefined number epochs and investigate 
the values of the loss function. If the loss converges and 
KPIs stabilize, then they stop the training. When they 
have intersection over union loss [50], they pre-train 
the model based on defined pre-training objectives.

When they apply KPIs to stop training, then the training 
stops earlier or too late. For instance, when loss con-
verges and KPIs become stable, it saves some epochs 
and system energy. However, the training process never 
ends if they set specific KPIs goals, which they never 
reach. Our third interviewee stated about role of KPIs:

• You could use KPIs even for stopping the training, 
but then it’s a bit tricky, because you can either stop 
earlier or stop too late. So, if you train for example, 
and then you measure KPIs and let’s say you converge 
quickly with good enough KPIs, then maybe you can 
save some epochs and some energy in the system, so 
you don’t train.

• But it could be also that if you target certain KPIs 
and you never reach that goal then you can run 

endlessly. So, you need to have another stop criteria 
somewhere.

To avoid such challenges and achieve the most opti-
mal KPIs, they designed another stopping criterion 
based on what system they develop. For instance, if 
they train a network, but the data is from other sce-
narios, then the training process is limited. It is lim-
ited because these data are collected for some other 
missions and can have different environments/geolo-
cations, etc. They also consider the scenarios of one 
place, such as high traffic, which cannot guarantee 
that the scenario works for another area with a sim-
ilar traffic scenario. Although new samples of data 
enhance the model, which can improve the model’s 
performance, it can also make the training process a 
long and iterative one.

The information from the model training is fed back 
to the model architecture stage to test the influence 
of the architecture as shown in Fig. 2. Our third inter-
viewee commented over training feedback during the 
interview:

• The information from the training fed back to the model 
architecture stage? If it influences the model architec-
ture? It is actually. We just recently changed one thing 
when it comes to, for example, the encoders.

Industrial recommended practice and rationale for 
training a model phase is shown in the fifth row of 
Table 3.

Summary: The team trains the network from scratch based on 
a lot of manual work. T1-S supports by optimizing weights and 
bias values. They also help in the training of the model in multiple 
environments. OEM team also performs a lot of manual work to 
analyze the training process. When the loss converges and KPIs 
become stable, they stop the training.

4.5.3.  How to Quantify the Model’s Performance in 
Training, Testing, and Validation During the 
Production Quality of ML-Based Systems?

Performance evaluation constitutes a fundamental 
stage within the ML-workflow, as depicted in Fig. 2.  
Prior to requesting additional data collection, it is 
advisable by E1 to first assess the model’s performance 
using three levels of KPIs at the detection level. These 
KPIs can be used to test the model’s efficacy for fur-
ther improvement. These KPIs are: 1) pixel-level eval-
uation, 2) feature-level evaluation based on projection 
onto the occupancy grid, and 3) sensor fusion-based 
evaluation encompassing the entire system function. 
Our first, second, and third interviewees, respectively 
stated regarding KPIs and performance evaluation:

• So, you know there’s like 3 levels of KPI’s measure-
ments at least. I mean the first one is on the pixel level, 
second one is on the projection to the occupancy grid, 
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measurement or whatever, and the third one is after 
the sensor fusion.

• We as a team focus on functional KPIs or we just focus 
on the algorithm KPIs. We only work with perception.

• It could be an issue if we for example look at the object 
detections. So, let’s say that we would like to have very 
high performance on the humans, we care less about 
high performance on the cars.

On the measurement grid, the focus lies on optimiz-
ing the predictive performance of emergency braking 
post-sensor fusion. The KPIs are continuously tracked 
at every stage, beginning with pixel-based evaluation. 
Specific functions are required to operate accurately 
within a virtual environment. In case of deteriorat-
ing KPIs in subsequent model iterations, the software 
development team engages in a comprehensive analy-
sis of the entire process to identify the root cause. This 
may involve scrutinizing sensor data, examining sensor 
fusion, or investigating camera data. The OEM has mul-
tiple teams dedicated to performance evaluation and 
root cause analysis, which collaborate to enhance the 
model’s overall performance.

E2 stated that, to achieve detailed performance eval-
uation, a data set should be created with annotations 
based on KPIs and model stability. The team can then 
determine desired performance levels based on rating 
scenarios. During data design and dataset creation, the 
development team defines various KPIs. For example, 
they establish true positive sets that assess the mod-
el’s performance in detecting target dummies when a 
car navigates on the track. Interventions in these sets 
are carried out to create rare scenarios that are prere-
corded. However, such scenarios are not included in the 
training set to prevent data leakage. Additionally, KPIs 
are designed for other types of object detection, such 
as detecting humans versus cars in the images. In such 
cases, the performance is split into intersection over 
union (IoU) over different objects. Finally, E3 mentioned 
that the model should be evaluated based on various 
parameters, such as network size, image size, stable 
KPIs, and the root cause of any issues should be traced 
back to losses and KPIs. Training performance should 
be tracked to ensure optimal results. We recommend a 
specific set of practices during the performance evalua-
tion and testing & validation phases, which are detailed 
in the sixth and seventh rows of Table 3.

Summary: The team organizes KPIs at three levels, i.e., pixel 
level, occupancy grid level and sensor fusion level. They measure 
IoU for pixel-based, then KPIs for simulation environment and to 
minimize false positive rate. They backtrack all the phases in case 
when they identify the poor performance of the model. They 
have different teams to examine the model’s performance based 
on different level of KPIs. They focus on the true positive rate for 
when the car drives in the target dummy’s track and prerecorded 
scenarios.

5. DISCUSSION

Our investigation has revealed that automotive soft-
ware development incorporating ML is considerably 
more complex than that of desktop software or oper-
ating systems. Contrary to previous studies, such as 
Amhersi et al. [5] research at Microsoft, our findings 
indicate that the focus is on data collection from the 
field and the subsequent model development phases. 
The studied company places substantial emphasis on 
planning data collection from the perspective of data 
quality, e.g., to prevent data leaks. This is unlike other 
companies, which often resort to designing their own 
data split algorithms after the fact. During the data col-
lection phase, a concentrated effort should be made 
to achieve the driving scenario objective, while simul-
taneously encompassing all possible scenarios and 
image quality. Particular attention should be devoted 
to corner cases, as they may require special handling to 
ensure the safety of the vehicle, its occupants, and the 
surrounding environment.

We have established a correlation between the phases 
of the SAFe process and the ML-workflow, as indicated 
in the final column of Table 3. Our observations indicate 
that the system design phase encompasses data collec-
tion and planning, as well as data cleaning and anno-
tation. Similarly, the implementation and unit testing 
phases pertain to model architecture design and per-
formance evaluation. Moreover, the system testing and 
acceptance testing phases are associated with testing 
and validation, and model deployment, respectively. 
Our findings align with those of Falcini et al. [51], as 
previously reported.

Given the ongoing development stage of the LSM func-
tion, we cannot address post-deployment consider-
ations at this point. Our study should have covered this 
aspect, which is crucial for adapting machine learning 
systems. We cannot comment whether the interviewed 
team applied post-deployment measures to the LSM 
function. Future research could explore strategies for 
managing post-deployment changes in ML-based auto-
motive functions to enhance sustained performance 
understanding.

Based on our research, we recommend a systematic 
approach to model development. First, the develop-
ment team should create a simple and concise model 
and then optimize it accordingly. Alternatively, they 
can explore existing solutions that minimize the risk 
of unexpected behavior and reduce the effort required 
for model testing, validation, and deployment. During 
the training phase, the team should monitor data qual-
ity, in particular, rare case scenarios and data leakage, 
by tracking suitable KPIs to measure progress (e.g., 
Staron et al. [52]). In addition to standard ML testing 
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and validation, the team should also perform software 
test cases, legal requirements, and safety and security 
tests. Our findings align with previous research by 
Salay et al. [2] and Rabe et al. [53].

6. VALIDITY EVALUATION

This section will discuss the potential threats and vul-
nerabilities in our study’s design, methodology, and 
findings. By identifying and addressing these potential 
threats, we aim to enhance the credibility and reliability 
of our research outcomes.

Internal validity
One potential internal threat to validity is the pos-
sibility of selection bias. There are four participants 
in our study were all involved in the development 
process of image-intensive systems, which may limit 
the generalizability of our findings to other domains. 
Additionally, the sample size was relatively small, 
which could affect the representativeness of our 
results. Furthermore, the interviews were conducted 
by a single interviewer, which may introduce inter-
viewer bias, and the interviewees’ behavior and mood 
during the interview could also influence the results. 
Finally, there may be inconsistencies in the coding 
process, which could affect the accuracy and consis-
tency of our results.

External validity
External validity refers to the extent to which the find-
ings of this study can be generalized to other settings, 
populations, or contexts. To mitigate this, we may need 
to collect data from a larger and more diverse sample 
of engineers working on similar projects. Additionally, 
we should consider conducting the study in other orga-
nizations to examine the generalizability of the find-
ings. To address potential bias, we could also consider 
using multiple methods of data collection and analysis. 
To ensure that the study’s findings accurately reflect 
the perspectives and experiences of the participants, 
we should engage in member checking, which involves 
sharing the study’s results with the engineers who were 
interviewed and asked for their feedback on the accu-
racy and completeness of the findings.

Furthermore, our study focused on developing and 
evaluating the low-speed maneuvering function using 
fisheye cameras. However, we need to consider how the 
hardware, platform, and software are integrated into 
the automotive system. This could impact the function’s 
real-world performance due to practical challenges 
introduced by hardware integration. Not having specific 
questions about hardware integration is a limitation of 
our study. Our findings mainly relate to the function’s 
development and effectiveness in terms of software 
and algorithms. However, smooth hardware integration 
is crucial for successful real-world deployment, which 

our study should have thoroughly addressed. Future 
research could delve into dedicated inquiries about 
hardware integration to improve the broader under-
standing of such a function’s implementation chal-
lenges. This would provide a more comprehensive view 
of the function’s function in practical scenarios.

Construct validity
Maintaining construct validity is crucial for ensuring that 
a study accurately measures the intended constructs 
and concepts. In our study, we focused on the develop-
ment of ML-based vision perception systems for active 
safety in an automotive OEM, we took several measures 
to strengthen the construct validity of our research. 
First, we carefully selected and operationalized the 
variables based on established theoretical frameworks 
and expert opinions. Second, we conducted pretesting 
of our measures to assess their clarity and effectiveness. 
Finally, we conducted thematic coding and shared it 
with group members to ensure consistency and reliabil-
ity. By following these steps, we are confident that our 
study accurately measures the relevant constructs and 
provides a strong foundation for our analyses.

Conclusion validity
Conclusion validity is crucial for ensuring that the con-
clusions of a study are based on sound data and analy-
sis. However, our study is limited by the fact that we only 
collected data from one team at the OEM. This restricts 
the generalizability of our findings, and to strengthen 
the validity of our conclusions, we recommend incor-
porating data from other sources, such as archival data, 
observations, or interviews with additional stakehold-
ers involved in the development process. By doing so, 
we can enhance the validity of our conclusions and 
ensure that they accurately reflect the broader context 
of the study.

A limitation stems from the case study’s constrained 
size and scope. Although our study provides valuable 
insights into developing and evaluating the low-speed 
maneuvering function using fisheye cameras within a 
specific context, directly extrapolating these findings to 
broader scenarios could be challenging. The case study’s 
focused nature might limit the function’s applicability 
to different deployment contexts and diverse hard-
ware configurations. Further research involving larger 
and more varied scenarios is necessary to enhance the  
generalizability of such function’s outcomes.

Our study’s results may affect its applicability in differ-
ent project phases and Technology Readiness Levels in 
a combined process. We acknowledge this limitation in 
our study’s scope and conclusions.

7. CONCLUSION AND FUTURE WORK

Machine learning takes increasingly more place in auto-
motive software development, as increasingly more 
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functions use machine learning algorithms. One of the 
areas is vision perception systems, where static images 
or video feeds are used to identify obstacles. However, 
the use of these algorithms requires changes in automo-
tive software development processes.

In this article, we studied the process of developing 
a vision perception system for one of the features of 
the SAE level 3 autonomy. The challenge in develop-
ing this system is the use of dedicated cameras, which 
are common in the automotive systems, but not well- 
supported in machine learning research (image recog-
nition, object detection, semantic segmentations).

In this study, we found that the SAFe automotive devel-
opment process can be aligned with the machine 
learning development process. We also found that the 
development team should always involve in the data 
collection phase, as it is the most important phase in 
the development process. The team should also focus 
on the model development phase, as it is the most 
time-consuming phase.

Our study also revealed a meticulous data collection pro-
cess guided by functional requirements and real-world 
conditions. The quality of the collected data is vital for 
the subsequent stages of development. Collaborative 
efforts between different teams and ML models impact 
the overall assurance of production quality. Additionally, 
considerations of data leak problems reflect the com-
prehensive strategy and over-all product quality. Our 
study highlights a careful data collection process driven 
by functional needs and real-world scenarios, indicating 
its role in subsequent development stages. The collab-
oration between various teams and machine learning 
models profoundly influences overall production qual-
ity assurance. Moreover, different teams also look for 
data leak issues that can affect the overall product qual-
ity. Our study’s limitations include the number of inter-
viewees and involved customers. It offers an illustrative 
example of integrating development processes within a 
specific context, providing valuable insights from this 
limited scope.

While our study offers valuable insights, its scope is con-
fined to four interviewees from a single OEM, impacting 
generalizability. Therefore, in future work, we plan to 
collect and integrate diverse data sources – like archival 
records, observations, and interviews with varied com-
panies to provide a more comprehensive context for our 
findings. We also plan to conduct similar interviews in 
other development projects of multiple OEMs to ensure 
product quality. We also plan to conduct interviews 
and discussions over the testing process, production 
model finalization, and data quality during run time. 
Furthermore, we plan to explore the evolution of the 
combined process during deployment/utilization and 
its adaptability across various Technology Readiness 
Levels, providing deeper insights into its dynamics and 
versatility across diverse project contexts.
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