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1. WHAT IS DIFFERENTIAL GEOMETRY? WHERE IS IT USED? 

Differential geometry studies the geometry of curves, surfaces, and higher dimensional smooth manifolds. It uses 
the ideas and techniques of differential and integral calculus, linear and multilinear algebras, topology, and 
differential equations. This subject in mathematics is closely related to differential topology, which concerns itself 
with properties of smooth manifolds. Differential geometry also closely relates to the geometric aspects of the 
theory of differential equations, otherwise known as geometric analysis. 

Curvature is an important notion in mathematics, which has been investigated extensively in differential 
geometry. There are two types of curvatures: namely, “intrinsic” and “extrinsic”. 

“Intrinsic curvature” describes the curvature at a point on a surface or a smooth manifold and is independent of 
how the surface or manifold is embedded in space. Borrow a term from biology, intrinsic invariants of a manifold 
are the DNA of the manifold. The Gauss curvature of a surface is the most commonly studied intrinsic measure of 
curvature. In higher dimensions, curvature is too complicated to be described by a single number. In this case, 
tensors are used to describe the curvature as pioneered by B. Riemann in his famous 1854 inaugural lecture at 
Gottingen: 

“Über die Hypothesen welche der Geometrie zu Grunde liegen.” 

In Einstein’s theory of general relativity, intrinsic curvature is key to understanding the shape of the universe. 

“Extrinsic curvature” of a manifold depends on how it is embedded within a space. Examples of extrinsic measures 
of curvature include geodesic curvature, principal curvature, and mean curvature. The most important extrinsic 
invariant for a submanifolds in an ambient Riemannian manifold is the mean curvature vector, which is known 
as the tension field in physics. 

Differential geometry studies the geometry of curves, surfaces and higher dimensional 
smooth manifolds. For submanifolds in Euclidean spaces, the position vector is the most 
natural geometric object. Position vectors find applications throughout mathematics, 
engineering and natural sciences. The purpose of this survey article is to present six 
research topics in differential geometry in which the position vector plays a very 
important role. In addition to this, we explain the link between position vectors with 
mechanics, dynamics, and D’Arcy Thompson’s law of natural growth in biology. 
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Differential geometry has numerous applications in mathematics and natural sciences. Most prominently, Albert 
Einstein used differential geometry for his theory of general relativity. More recently, differential geometry was 
applied by physicists in the development of quantum field theory and the standard model of particle physics. 
Outside of physics, differential geometry finds many applications in botany, biology, economics, chemistry, 
engineering, medical imaging, control theory, computer graphics and vision, and recently in machine learning. 

2. BASIC NOTATIONS AND FORMULAS 

For the general references in this section, we refer to [1,2,3,4,5,6,7]. 

Let 𝐱𝐱𝐱𝐱:𝑀𝑀𝑀𝑀 → 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚  be an isometric immersion of a Riemannian manifold 𝑀𝑀𝑀𝑀 into the Euclidean 𝑚𝑚𝑚𝑚-space 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚. For each 
point 𝑝𝑝𝑝𝑝 ∈ 𝑀𝑀𝑀𝑀, we denote by 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀 and 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝⊥𝑀𝑀𝑀𝑀 the tangent and the normal spaces at 𝑝𝑝𝑝𝑝. There is a natural orthogonal 
decomposition: 

𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀⊕ 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝⊥𝑀𝑀𝑀𝑀 

Let ∇ and ∇̃ denote the Levi-Civita connections of 𝑀𝑀𝑀𝑀 and 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚, respectively. Then the formulas of Gauss and 
Weingarten are given respectively by: 

∇̃𝑋𝑋𝑋𝑋𝑌𝑌𝑌𝑌 = ∇𝑋𝑋𝑋𝑋𝑌𝑌𝑌𝑌 + ℎ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌)                                                                                                                                   (2.1)
∇̃𝑋𝑋𝑋𝑋𝜉𝜉𝜉𝜉 = −𝐴𝐴𝐴𝐴𝜉𝜉𝜉𝜉𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷𝑋𝑋𝑋𝑋𝜉𝜉𝜉𝜉                                                                                                                                      (2.2) 

for vector fields 𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌 tangent to 𝑀𝑀𝑀𝑀 and 𝜉𝜉𝜉𝜉 normal to 𝑀𝑀𝑀𝑀, where ℎ is the second fundamental form, 𝐷𝐷𝐷𝐷 the normal 
connection, and 𝐴𝐴𝐴𝐴 the shape operator of 𝑀𝑀𝑀𝑀. 

For a normal vector 𝜉𝜉𝜉𝜉 at 𝑝𝑝𝑝𝑝, the shape operator 𝐴𝐴𝐴𝐴𝜉𝜉𝜉𝜉  is a self-adjoint endomorphism of 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀. The second fundamental 
form ℎ and the shape operator 𝐴𝐴𝐴𝐴 are related by: 

�𝐴𝐴𝐴𝐴𝜉𝜉𝜉𝜉𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌� = ⟨ℎ(𝑋𝑋𝑋𝑋, 𝑌𝑌𝑌𝑌), 𝜉𝜉𝜉𝜉⟩                                                                                                                                     (2.3) 

where ⟨,⟩ is the inner product on M as well as on the ambient Euclidean space. The mean curvature vector of 𝑀𝑀𝑀𝑀 is 
defined by: 

𝐻𝐻𝐻𝐻 =
1
𝑛𝑛𝑛𝑛  Trace ℎ                                                                                                                                                   (2.4) 

where 𝑛𝑛𝑛𝑛 = dim 𝑀𝑀𝑀𝑀. At a given point 𝑝𝑝𝑝𝑝 ∈ 𝑀𝑀𝑀𝑀, the first normal space of 𝑀𝑀𝑀𝑀 in 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚, denoted by Im ℎ𝑝𝑝𝑝𝑝 , is the subspace 
defined by: 

Im ℎ𝑝𝑝𝑝𝑝 = Span �ℎ(𝑋𝑋𝑋𝑋, 𝑌𝑌𝑌𝑌):𝑋𝑋𝑋𝑋, 𝑌𝑌𝑌𝑌 ∈ 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀�                                                                                                           (2.5) 

A submanifold 𝑀𝑀𝑀𝑀 is called totally geodesic if its second fundamental form ℎ vanishes identically; and totally 
umbilical if for any normal vector field 𝜉𝜉𝜉𝜉 of 𝑀𝑀𝑀𝑀, 𝐴𝐴𝐴𝐴𝜉𝜉𝜉𝜉 = 𝑓𝑓𝑓𝑓𝜉𝜉𝜉𝜉𝐼𝐼𝐼𝐼 holds for some function 𝑓𝑓𝑓𝑓𝜉𝜉𝜉𝜉 , where 𝐼𝐼𝐼𝐼 is the identity map. A 
submanifold 𝑀𝑀𝑀𝑀 is called pseudo-umbilical if it satisfies 𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻 = 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼 for some function 𝑓𝑓𝑓𝑓 on 𝑀𝑀𝑀𝑀. Further, a hypersurface 
of dimension 𝑛𝑛𝑛𝑛 is called quasi-umbilical if its shape operator has an eigenvalue of multiplicity ≥ 𝑛𝑛𝑛𝑛 − 1. 

For a Riemannian manifold (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔) with Riemannian connection ∇, the Riemann curvature tensor 𝑅𝑅𝑅𝑅 is defined by: 

𝑅𝑅𝑅𝑅(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌)𝑍𝑍𝑍𝑍 = ∇𝑋𝑋𝑋𝑋∇𝑌𝑌𝑌𝑌𝑍𝑍𝑍𝑍 − ∇𝑌𝑌𝑌𝑌∇𝑋𝑋𝑋𝑋𝑍𝑍𝑍𝑍 − ∇[𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌]𝑍𝑍𝑍𝑍                                                                                                       (2.6) 

for vector fields 𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌,𝑍𝑍𝑍𝑍 tangent to 𝑀𝑀𝑀𝑀. The Ricci curvature tensor of 𝑀𝑀𝑀𝑀, denoted by 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, is defined by: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑋𝑋𝑋𝑋, 𝑌𝑌𝑌𝑌) = trace {𝑍𝑍𝑍𝑍 ↦ 𝑅𝑅𝑅𝑅(𝑍𝑍𝑍𝑍,𝑋𝑋𝑋𝑋)𝑌𝑌𝑌𝑌}                                                                                                              (2.7) 

The scalar curvature 𝜌𝜌𝜌𝜌 is defined as the trace of Ricci curvature tensor. For surfaces, the scalar curvature is nothing 
but the Gaussian curvature. 

A Riemannian manifold of dimension 𝑛𝑛𝑛𝑛 ≥ 3 is called an Einstein manifold if it satisfies 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔 for a constant 𝑅𝑅𝑅𝑅. 
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For a submanifold 𝑀𝑀𝑀𝑀 lying in a Euclidean space, the most elementary and natural geometric object is the position 
vector 𝐱𝐱𝐱𝐱 of 𝑀𝑀𝑀𝑀. The position vector, also known as location vector or radius vector, is a Euclidean vector 𝐱𝐱𝐱𝐱 = 𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝����⃗  
that represents the position of a point 𝑝𝑝𝑝𝑝 ∈ 𝑀𝑀𝑀𝑀 in relation to an arbitrary reference origin 𝑜𝑜𝑜𝑜. 

Among extrinsic invariants of a submanifold, the most natural and important one is the mean curvature vector 𝐻𝐻𝐻𝐻. 
In physics, the mean curvature vector is the tension field imposed on the submanifold arising from the ambient 
space. It is well-known that the surface tension is responsible for the shape of liquid droplets. In materials science, 
surface tension is used for either surface stress or surface free energy. 

The position vector field 𝐱𝐱𝐱𝐱 and the mean curvature vector 𝐻𝐻𝐻𝐻 of 𝑀𝑀𝑀𝑀 is linked by the well-known formula of E. 
Beltrami: 

Δ𝐱𝐱𝐱𝐱 = −𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻                                                                                                                                                           (2.8) 

where Δ is the Laplacian of 𝑀𝑀𝑀𝑀 with respect to its induced metric on 𝑀𝑀𝑀𝑀 from the metric of the ambient space. 

If the mean curvature vector vanishes identically on a submanifold 𝑀𝑀𝑀𝑀, then it is called a minimal submanifold.  
The history of minimal submanifolds goes back to J.L. Lagrange who initiated the study of minimal surfaces in 𝔼𝔼𝔼𝔼3 
in [8]. Since then, the theory of minimal surfaces has attracted many mathematicians for more than two centuries. 
In particular, minimal surfaces and minimal submanifolds in Riemannian manifolds of constant curvature have 
been studied extensively (see e.g. [9,10,11,12,13]). 

The position vector plays important roles in physics, especially in mechanics. In any equation of motion, the 
position vector 𝐱𝐱𝐱𝐱(𝑡𝑡𝑡𝑡) is usually the most soughtafter quantity because it defines the motion of a particle – its 
location at some time variable 𝑡𝑡𝑡𝑡. It is well-known that the first and the second derivatives of the position vector 
with respect to time 𝑡𝑡𝑡𝑡 gives rise to the velocity and acceleration of the particle. 

There are many beautiful links between geometry and botany, biology, etc. as already mentioned in several talks 
delivered at this Symposium on “Square Bamboos and the Geometree” held on 21-22 November 2022, as well 
as illustrated in J. Gielis’ book “The Geometrical Beauty of Plants” [14]. The purpose of this survey article is thus to 
present six research topics in differential geometry in which the position vector plays a very important role. 

3. TOPIC I: THOMPSON’S LAW OF NATURAL GROWTH AND  
DIFFERENTIAL GEOMETRY 

D'Arcy Thompson was a pioneer of mathematical biology. He was elected a Fellow of the Royal Society, was 
knighted, and received the Linnean Medal (1938) and the Darwin Medal (1946) for his important contribution in 
biology. His most famous work is his book "On Growth and Form" [15] originally published in 1917 with many 
revised editions (Fig. 1). Thompson's theory of growth and form provided an excellent link between biology and 
differential geometry of position vector fields. 

The central theme of Thompson's book is that biologists of his time overemphasized evolution as the fundamental 
determinant of the form and structure of living organisms and underemphasized the roles of physical laws and 
mechanics. Therefore, he advocated structuralism as an alternative to survival of the fittest in governing the form 
of species. 

 
Figure 1. Cover image of the book “On Growth and Form” by D'Arcy Wentworth Thompson. 
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On the concept of "allometry" of his study of the relationship of body size and shape, Thompson wrote: 
 "An organism is so complex a thing, and growth so complex a phenomenon, that for growth to be so uniform and 
constant in all the parts as to keep the whole shape unchanged would indeed be an unlikely and an unusual 
circumstance. Rates vary, proportions change, and the whole configuration alters accordingly." 

In the section "The Equiangular Spiral in Its Dynamical Aspect", he wrote: "In mechanical structures, curvature is 
essentially a mechanical phenomenon. It is found in flexible structures as a result of bending, or it may be introduced 
into construction for the purpose of resisting such a bending-moment. But neither shell nor tooth nor claw are flexible 
structures; they have not been bent into their peculiar curvature, they have grown into it. 

We may for a moment, however, regard the equiangular or logarithmic spiral of our shell from the dynamic point of 
view, by looking at growth itself as the force concerned. In the growing structure, let growth at a point 𝑃𝑃𝑃𝑃 be resolved 
into a force 𝐹𝐹𝐹𝐹 acting along the line joining 𝑃𝑃𝑃𝑃 to a pole 𝑂𝑂𝑂𝑂, and a force 𝑇𝑇𝑇𝑇 acting in a direction perpendicular to 𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃; and 
let the magnitude of these forces (or of these rates of growth) remain constant. It follows that the resultant of the 
forces 𝐹𝐹𝐹𝐹 and 𝑇𝑇𝑇𝑇 (as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) makes a constant angle with the radius vector [position vector]. But a constant angle between 
tangent and radius vector [position vector] is a fundamental property of the "equiangular" spiral: the very property 
with which Descartes started his investigation, and that which gives its alternative name to the curve. 

In such a spiral, radial growth and growth in the direction of the curve bear a constant ratio to one another.  
For, if we consider a consecutive radius vector 𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃′ , whose increment as compared with 𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃 is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, while ds is the small 
arc 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′, then 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 𝛼𝛼𝛼𝛼 = constant. 

In the growth of a shell, we can conceive no simpler law than this, that it shall widen and lengthen in the same 
unvarying proportions: and this simplest of laws is that which Nature tends to follow. The shell, like the creature 
within it, grows in size but does not change its shape; and the existence of this constant relativity of growth, or 
constant similarity of form, is of the essence, and may be made the basis of a definition, of the equiangular spiral." 

Thompson's law of natural growth has a natural link1 to the author's constant-ratio submanifolds in his study of 
the position vector published in [16]. 

Let 𝐱𝐱𝐱𝐱 denote the position vector of a submanifold 𝑀𝑀𝑀𝑀 of 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚. Then there exists an orthogonal decomposition: 

𝐱𝐱𝐱𝐱 = 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇 + 𝐱𝐱𝐱𝐱⊥                                                                                                                                                        (3.1) 

where 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇  and 𝐱𝐱𝐱𝐱⊥ are the tangential and normal components of 𝐱𝐱𝐱𝐱, respectively. Let ∥∥𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇∥∥ and ∥∥𝐱𝐱𝐱𝐱⊥∥∥ denote the length 
of 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇  and 𝐱𝐱𝐱𝐱⊥, respectively. Then a submanifold 𝑀𝑀𝑀𝑀 of 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 is said to be of constant-ratio if the ratio ∥∥𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇∥∥: ∥∥𝐱𝐱𝐱𝐱⊥∥∥ is a 
constant. A Euclidean submanifold 𝑀𝑀𝑀𝑀 is called a proper submanifold if both 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇  and 𝐱𝐱𝐱𝐱𝑁𝑁𝑁𝑁 are nowhere zero on an 
open dense subset of 𝑀𝑀𝑀𝑀. 

Note that a constant-ratio curve in a plane is exactly an equiangular curve in the sense of Thompson.  
Hence, constant-ratio submanifolds can be regarded as a higher dimensional version of Thompson's equiangular 
curves. For this reason, constant-ratio submanifolds are also known in some literature as equiangular 
submanifolds (see e.g. [17,18,19]). 

Constant-ratio submanifolds in Euclidean spaces and space-like constant ratio submanifolds in pseudo-Euclidean 
spaces have been completely classified in [16,20]. 

Remark 3.1. Constant ratio submanifolds are also related to the notion of convolution manifolds introduced by 
the author in [21,22]. 

Remark 3.2. It was known in [16] that the tangential component 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇  of the position vector field 𝐱𝐱𝐱𝐱 of a constant-
ratio hypersurface in 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 defines a principal direction. In [23] Y. Fu and M.I. Munteanu called a surface in 𝔼𝔼𝔼𝔼3 a 
generalized constant-ratio surface if 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇  is a principal direction. They proved in [23] that a generalized constant-
ratio surface in 𝔼𝔼𝔼𝔼3 can be parametrized as: 

𝑥𝑥𝑥𝑥(𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠(cos 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠)𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) + sin 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠)𝛾𝛾𝛾𝛾(𝑡𝑡𝑡𝑡) × 𝛾𝛾𝛾𝛾′(𝑡𝑡𝑡𝑡)) 

where 𝛾𝛾𝛾𝛾 is a unit speed curve on the unit 2-sphere centered at the origin and 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠) = ∫ 𝑡𝑡𝑡𝑡−1 cot 𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡) 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠
0  for some 

function 𝜃𝜃𝜃𝜃(𝑠𝑠𝑠𝑠) ∈ �0, 𝜋𝜋𝜋𝜋
2
�. 

 
1 The author thanks Leopold Verstraelen who pointed out this nice link to the author several years after the appearance of [16]. 
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4. TOPIC II: RECTIFYING CURVES AND RECTIFYING SUBMANIFOLDS 

In elementary differential geometry, most geometers describe a curve as a unit speed curve 𝐱𝐱𝐱𝐱 = 𝐱𝐱𝐱𝐱(𝑠𝑠𝑠𝑠) whose 
position vector is expressed in term of an arc-length parameter 𝑠𝑠𝑠𝑠. In order to define the curvature and torsion for 
space curves, we need to recall the Frenet-Serret formulas of space curves which are defined as follows. 

Let 𝐱𝐱𝐱𝐱: 𝐼𝐼𝐼𝐼 → 𝔼𝔼𝔼𝔼3 be a unit-speed smooth curve defined on an open interval 𝐼𝐼𝐼𝐼 = (𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽). Let us put 𝐭𝐭𝐭𝐭 = 𝐱𝐱𝐱𝐱′(𝑠𝑠𝑠𝑠). It is 
possible that 𝐭𝐭𝐭𝐭′(𝑠𝑠𝑠𝑠) = 0 for some 𝑠𝑠𝑠𝑠; however, we assume that this never happens. Then we can define a unique 
vector field 𝐧𝐧𝐧𝐧 and a positive function 𝜅𝜅𝜅𝜅 in such way that 𝐭𝐭𝐭𝐭′ = 𝜅𝜅𝜅𝜅𝐧𝐧𝐧𝐧. We call 𝐧𝐧𝐧𝐧 the principal normal vector and 𝜅𝜅𝜅𝜅 the 
curvature of the curve. Since 𝐭𝐭𝐭𝐭 is of constant length, 𝐧𝐧𝐧𝐧 must be perpendicular to 𝐭𝐭𝐭𝐭. The binormal vector is then 
defined by 𝐛𝐛𝐛𝐛 = 𝐭𝐭𝐭𝐭 × 𝐧𝐧𝐧𝐧, which is a unit vector field perpendicular to both 𝐭𝐭𝐭𝐭 and 𝐧𝐧𝐧𝐧. One defines the torsion 𝜏𝜏𝜏𝜏 by the 
equation 𝐛𝐛𝐛𝐛′ = −𝜏𝜏𝜏𝜏𝐧𝐧𝐧𝐧. A curve in 𝔼𝔼𝔼𝔼3 is called twisted if has non-zero curvature and non-zero torsion. 

The famous Frenet-Serret formulas are given by: 

�
𝐭𝐭𝐭𝐭′ = 𝜅𝜅𝜅𝜅𝐧𝐧𝐧𝐧
𝐧𝐧𝐧𝐧′ = −𝜅𝜅𝜅𝜅𝐭𝐭𝐭𝐭 + 𝜏𝜏𝜏𝜏𝐛𝐛𝐛𝐛                                                                                                                                                  (4.1)
𝐛𝐛𝐛𝐛′ = −𝜏𝜏𝜏𝜏𝐧𝐧𝐧𝐧

 

At each point of the curve, the three basic planes spanned by {𝐭𝐭𝐭𝐭,𝐧𝐧𝐧𝐧}, {𝐭𝐭𝐭𝐭,𝐛𝐛𝐛𝐛} and {𝐧𝐧𝐧𝐧,𝐛𝐛𝐛𝐛} are called the osculating plane, 
the rectifying plane, and the normal plane, respectively. 

A helix is a curve in 𝔼𝔼𝔼𝔼3 which satisfies the property that its tangents make a constant angle with a fixed line 𝐿𝐿𝐿𝐿, 
called the axis. It is known in classical differential geometry that a curve in 𝔼𝔼𝔼𝔼3 is a planar curve if and only if its 
position vector lies in its osculating plane at each point; and a curve lies in a sphere if and only if its position vector 
always lies in its normal plane. In view of these two basic facts, the author asked in [24] the following simple and 
natural geometric question: 

Question. When does the position vector of a space curve 𝒙𝒙𝒙𝒙: 𝐼𝐼𝐼𝐼 → 𝔼𝔼𝔼𝔼3 always lie in its rectifying plane? 

The author simply called such a curve a rectifying curve. Obviously, the position vector of a rectifying curve 
satisfies: 

𝐱𝐱𝐱𝐱(𝑠𝑠𝑠𝑠) = 𝜆𝜆𝜆𝜆(𝑠𝑠𝑠𝑠)𝐭𝐭𝐭𝐭(𝑠𝑠𝑠𝑠) + 𝜇𝜇𝜇𝜇(𝑠𝑠𝑠𝑠)𝐛𝐛𝐛𝐛(𝑠𝑠𝑠𝑠)                                                                                                                           (4.2) 

for some functions 𝜆𝜆𝜆𝜆 and 𝜇𝜇𝜇𝜇. 

4.1. Physical Interpretation of Rectifying Curves 

If a moving point traverses a curve in such a way that 𝑠𝑠𝑠𝑠 is the time parameter, then the Frenet-Serret frame {𝐭𝐭𝐭𝐭,𝐧𝐧𝐧𝐧,𝐛𝐛𝐛𝐛} 
moves in accordance with the Frenet-Serret formulas in Eq. (4.1). It is well known in mechanics that this motion 
contains, apart from an instantaneous translation, an instantaneous rotation with angular velocity vector given 
by the following Darboux's rotation vector: 

𝐝𝐝𝐝𝐝 = 𝜏𝜏𝜏𝜏𝐭𝐭𝐭𝐭 + 𝜅𝜅𝜅𝜅𝐛𝐛𝐛𝐛 

The direction of the Darboux rotation vector is that of the instantaneous axis of rotation and its length √𝜅𝜅𝜅𝜅2 + 𝜏𝜏𝜏𝜏2 is 
called the angular speed (see e.g. [25]). By applying Eq. (4.2), we can prove that rectifying curves are exactly the 
space curves whose axis of instantaneous rotation always passes through the origin of 𝔼𝔼𝔼𝔼3. 

4.2. Comparison of Helices and Rectifying Curves 

A well-known theorem of M.A. Lancret [26] proven in 1806 stated that a curve in 𝔼𝔼𝔼𝔼3 is a helix if and only if the 
ratio 𝜏𝜏𝜏𝜏: 𝜅𝜅𝜅𝜅 is a non-zero constant. 

For rectifying curves, we have the following result from [24]: 

Theorem 4.1. A curve x: 𝐼𝐼𝐼𝐼 → 𝔼𝔼𝔼𝔼3 is a rectifying curve if and only if the ratio 𝜏𝜏𝜏𝜏: 𝜅𝜅𝜅𝜅 is a non-constant linear function in 
an arc-length function 𝑠𝑠𝑠𝑠. 
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The fundamental theorem for space curves in 𝔼𝔼𝔼𝔼3 states that, up to rigid motions, a curve is uniquely determined 
by its curvature and torsion given as functions of the arc-length. It invokes solving the Frenet-Serret equations in 
order to determine the space curves. 

On the other hand, a result of S. Lie and J.-G. Darboux showed that solving the Frenet-Serret equations is 
equivalent to solving the following complex Riccati equation: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 = i �

𝜏𝜏𝜏𝜏
2𝑑𝑑𝑑𝑑

2 −
𝜏𝜏𝜏𝜏
2 − 𝜅𝜅𝜅𝜅𝑑𝑑𝑑𝑑�                                                                                                                                (4.3) 

In practice, for a space curve with prescribed curvature 𝜅𝜅𝜅𝜅 and torsion 𝜏𝜏𝜏𝜏, the solutions of differential equation Eq. 
(4.3) are often impossible to find explicitly. Fortunately, the author was able to determine all rectifying curves in 
𝔼𝔼𝔼𝔼3 explicitly in [24] as follows: 

Theorem 4.2. A curve in 𝔼𝔼𝔼𝔼3 is a rectifying curve if and only if it is given by: 

𝐱𝐱𝐱𝐱(𝑡𝑡𝑡𝑡) = 𝑎𝑎𝑎𝑎sec (𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)𝐲𝐲𝐲𝐲(𝑡𝑡𝑡𝑡)                                                                                                                                  (4.4) 

where 𝑎𝑎𝑎𝑎 ≠ 0 and 𝑏𝑏𝑏𝑏 are real numbers, and 𝒚𝒚𝒚𝒚 = 𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) is a unit-speed curve in the unit sphere 𝑆𝑆𝑆𝑆2(1) ⊂ 𝔼𝔼𝔼𝔼3 centered at 
the origin o.  

For a unit speed curve 𝐲𝐲𝐲𝐲 = 𝐲𝐲𝐲𝐲(𝑡𝑡𝑡𝑡) lying on 𝑆𝑆𝑆𝑆2(1) ⊂ 𝔼𝔼𝔼𝔼3, let 𝐶𝐶𝐶𝐶𝐲𝐲𝐲𝐲 denote the cone with vertex at 𝑜𝑜𝑜𝑜 ∈ 𝔼𝔼𝔼𝔼3  over the spherical 
curve 𝒚𝒚𝒚𝒚. We may parametrize 𝐶𝐶𝐶𝐶𝐲𝐲𝐲𝐲 as: 

𝐶𝐶𝐶𝐶𝐲𝐲𝐲𝐲(𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢) = 𝑢𝑢𝑢𝑢𝐲𝐲𝐲𝐲(𝑡𝑡𝑡𝑡)          𝑢𝑢𝑢𝑢 ∈ 𝐑𝐑𝐑𝐑+                                                                                                                         (4.5) 

A well-known result in classical differential geometry states that a helix is a geodesic on the cylinder in 𝔼𝔼𝔼𝔼3 
containing the helix. 

On the other hand, for rectifying curves we have the following result from [27]: 

Theorem 4.3. A rectifying curve 𝛾𝛾𝛾𝛾 is a geodesic on the cone C𝐲𝐲𝐲𝐲 containing 𝛾𝛾𝛾𝛾, where 𝒚𝒚𝒚𝒚 is defined by Eq. (4.4). 

Besides those results mentioned above, rectifying curves have many other nice properties (see e.g. [24,27,28,29]). 
During the last two decades, there are many articles investigating rectifying curves in various ambient spaces and 
many new results in this respect have been obtained (see e.g. [30,31,32,33,34]). 

4.3. Rectifying Submanifolds 

For a curve 𝐱𝐱𝐱𝐱: 𝐼𝐼𝐼𝐼 → 𝔼𝔼𝔼𝔼3 with 𝜅𝜅𝜅𝜅(𝑠𝑠𝑠𝑠0) ≠ 0 at 𝑠𝑠𝑠𝑠0 ∈ 𝐼𝐼𝐼𝐼, the first normal space of the curve at 𝑠𝑠𝑠𝑠0 is the line spanned by the 
principal normal 𝐧𝐧𝐧𝐧(𝑠𝑠𝑠𝑠0). Therefore, the rectifying plane at 𝑠𝑠𝑠𝑠0 is exactly the plane orthogonal to the first normal 
space at 𝑠𝑠𝑠𝑠0. Consequently, for a submanifold 𝑀𝑀𝑀𝑀 ⊂ 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 and a point 𝑝𝑝𝑝𝑝 ∈ 𝑀𝑀𝑀𝑀, we may call the subspace of 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 which 
is the orthogonal complement to the first normal space Im 𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝 to be the rectifying space of 𝑀𝑀𝑀𝑀 at 𝑝𝑝𝑝𝑝. Based on this 
simple fact, the author extended the notion of rectifying curves to rectifying submanifolds in [35] as follows. 

A submanifold 𝑀𝑀𝑀𝑀 of a Euclidean space is called a rectifying submanifold if the position vector field 𝐱𝐱𝐱𝐱 of 𝑀𝑀𝑀𝑀 always 
lies in its rectifying space. In other words, 𝑀𝑀𝑀𝑀 is called a rectifying submanifold if and only if 𝐱𝐱𝐱𝐱(𝑝𝑝𝑝𝑝) ⊥ Im ℎ𝑝𝑝𝑝𝑝 at every 
point 𝑝𝑝𝑝𝑝 ∈ 𝑀𝑀𝑀𝑀. 

5. TOPIC III: FINITE TYPE SUBMANIFOLDS 

The notion of finite type submanifolds was introduced around the beginning of 1980s via the author's attempts 
to find the best possible estimates of the total mean curvature for compact Euclidean submanifolds, and also in 
the late 1970s to search for a notion of "degree" for general submanifolds in Euclidean spaces (see [1,36,37]). 
This topic of finite type submanifolds is another active research topic in which the position vectors of Euclidean 
submanifolds play important roles. 

Let Δ denote the Laplacian of a submanifold 𝑀𝑀𝑀𝑀 in 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 as before. Then 𝑀𝑀𝑀𝑀 is said to be of finite type if its position 
vector 𝐱𝐱𝐱𝐱 admits a finite spectral decomposition with respect to Δ: 
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𝐱𝐱𝐱𝐱 = 𝑅𝑅𝑅𝑅 + 𝐱𝐱𝐱𝐱1 +⋯+ 𝐱𝐱𝐱𝐱𝑘𝑘𝑘𝑘                                                                                                                                         (5.1) 

where 𝑅𝑅𝑅𝑅 is a constant vector and 𝐱𝐱𝐱𝐱1, … , 𝐱𝐱𝐱𝐱𝑘𝑘𝑘𝑘  are non-constant maps satisfying: 

Δ𝐱𝐱𝐱𝐱𝑖𝑖𝑖𝑖 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝐱𝐱𝐱𝐱𝑖𝑖𝑖𝑖           𝑅𝑅𝑅𝑅 = 1, … ,𝑘𝑘𝑘𝑘                                                                                                                             (5.2) 

for some eigenvalues 𝜆𝜆𝜆𝜆1, … , 𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘  of Δ. If 𝜆𝜆𝜆𝜆1, … , 𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘  in Eq. (5.2) are mutually different, then the submanifold 𝑀𝑀𝑀𝑀 is said 
to be of k-type. A submanifold of a Euclidean space is said to be of infinite type if it is not of finite type. 

The family of submanifolds of finite type is very large since it contains many important families of submanifolds, 
e.g. all minimal submanifolds of Euclidean spaces, all minimal submanifolds of hyperspheres, all parallel 
submanifolds, and all equivariantly immersed compact homogeneous submanifolds in Euclidean spaces. Just like 
minimal submanifolds, submanifolds of finite type are characterized by a spectral variation principle; namely, as 
critical points of directional deformations (see [38] for details). 

On one hand, the study of finite type submanifolds provides a natural way to link spectral geometry with the 
theory of submanifolds. On the other hand, we can apply the theory of finite type submanifolds to obtain some 
important information on the spectral geometry of submanifolds. 

The first results on finite type submanifolds as well as results on finite type maps were collected in author's books 
[1,39] published in the middle of the 1980s. Further, a list of twelve open problems and three conjectures on finite 
type submanifolds was published in 1991 (see [40]). Furthermore, a comprehensive survey of results on this 
topic up to 1996 was given in [41]. Moreover, an up-to-date comprehensive survey, up to 2015, on this topic was 
presented in the author's book [42]. For more results on this, we refer to [40,41,42,43,44]. 

Two main conjectures on finite type submanifolds are the following (see [39,41]): 

Conjecture A. The only compact hypersurfaces of finite type in Euclidean space are ordinary hyperspheres. 

Conjecture B. The only finite type surfaces in 𝔼𝔼𝔼𝔼3 are minimal surfaces, open portions of spheres, and open portions 
of circular cylinders. 

Although there are many articles which provide affirmative partial answers to support these two conjectures, 
both of them remain open since 1985. 

6. TOPIC IV: BIHARMONIC SUBMANIFOLDS AND BIHARMONIC CONJECTURES 

According to Beltrami's formula in Eq. (2.8), a submanifold of a Euclidean space is a minimal submanifold if and 
only if its position vector 𝐱𝐱𝐱𝐱 is harmonic, i.e. Δ𝐱𝐱𝐱𝐱 = 0. Therefore, a submanifold 𝑀𝑀𝑀𝑀 ⊂ 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 is called a biharmonic 
submanifold if its position vector field satisfies the following biharmonic condition: 

Δ2𝐱𝐱𝐱𝐱 = 0                                                                                                                                                                (6.1) 

Obviously, every minimal submanifold of a Euclidean space is always biharmonic. Hence, the real question on 
biharmonic submanifolds is: 

"When a biharmonic submanifold is minimal or harmonic?" 

It follows easily from Hopf's lemma and Eq. (6.1) that every biharmonic submanifold of a Euclidean space is non-
compact. The study of biharmonic submanifolds in Euclidean spaces was raised by the author in the middle of the 
1980s via his program in understanding finite type submanifolds (and independently by G.-Y. Jiang [45] in his 
study of the Euler-Lagrange's equation of bi-energy functional via Eells-Sampson's work [46]). 

The author showed in the middle of 1980s that biharmonic surfaces in 𝔼𝔼𝔼𝔼3 are always minimal (unpublished then). 
This result was the starting point of I. Dimitrić's work on his doctoral thesis [47] at Michigan State University. In 
this respect, Dimitrić extended the author's result on biharmonic surfaces in 𝔼𝔼𝔼𝔼3 to biharmonic hypersurfaces of 
𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1,𝑛𝑛𝑛𝑛 ≥ 3, with at most two distinct principal curvatures in [47]. Moreover, Dimitrić proved that every 
biharmonic submanifold of finite type in Euclidean space is always minimal, regardless of codimension. He also 
proved that every pseudo-umbilical biharmonic submanifold of a Euclidean space is always minimal. 
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About 30 years ago, the author made the following biharmonic conjecture: 

Conjecture. The only biharmonic submanifolds of Euclidean space are the minimal ones [40]. 

There are many articles published during the last 30 years to support this biharmonic conjecture (see e.g. 
[18,47,48,49,50,51,52,53,54,55]). However, this conjecture remains open until now. 

The next conjecture was made by R. Caddeo, S. Montaldo and C. Oniciuc in [56,57] which can be regarded as an 
extension of the author's biharmonic conjecture: 

Generalized Chen's Conjecture. Every biharmonic submanifold of a Riemannian manifold with non-positive 
sectional curvature is minimal. 

In [58], Y.-L. Ou and L. Tang proved that Generalized Chen's Conjecture is false in general, by constructing 
foliations of proper biharmonic hyperplanes in some conformally flat 5-manifolds with negative sectional 
curvature (see also [59]). On the other hand, there are many results since the early 2000s which support the 
Generalized Chen's Conjecture under some additional conditions on the ambient spaces (see e.g. 
[56,60,61,62,63,64,65] among many others). 

Nowadays, the study of biharmonic submanifolds is a very active research topic. Biharmonic submanifolds have 
received growing attention with much progress made since the beginning of this century. 

For a comprehensive survey of results on biharmonic submanifolds and on biharmonic maps up to 2020, we refer 
to the book [7] by Y.-L. Ou and the author, and also to the references mentioned in [7]. 

7. TOPIC V: MEAN CURVATURE FLOWS AND SELF-SHRINKERS 

In differential geometry, a geometric flow, or a geometric evolution equation, is a type of geometric object such as 
a Riemannian metric or an embedding. The most well-known geometric flows are mean curvature flows, Ricci 
flows and Yamabe flows. 

An important class of solutions of mean curvature flows is the class of self-shrinkers. And the most important 
families of solutions for Ricci flows and Yamabe flows are "Ricci solitons" and "Yamabe solitons", respectively. 

A mean curvature flow of an immersion 𝐱𝐱𝐱𝐱:𝑀𝑀𝑀𝑀 → 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚  is a one-parameter family 𝐱𝐱𝐱𝐱𝑡𝑡𝑡𝑡 = 𝐱𝐱𝐱𝐱(⋅, 𝑡𝑡𝑡𝑡) of immersions 𝐱𝐱𝐱𝐱𝑡𝑡𝑡𝑡:𝑀𝑀𝑀𝑀 →
𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 such that: 

∂
∂𝑡𝑡𝑡𝑡 𝐱𝐱𝐱𝐱

(𝑝𝑝𝑝𝑝, 𝑡𝑡𝑡𝑡) = 𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑡𝑡𝑡𝑡),     𝐱𝐱𝐱𝐱(𝑝𝑝𝑝𝑝, 0) = 𝐱𝐱𝐱𝐱(𝑝𝑝𝑝𝑝)          𝑝𝑝𝑝𝑝 ∈ 𝑀𝑀𝑀𝑀                                                                                   (7.1) 

is satisfied, where 𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝, 𝑡𝑡𝑡𝑡) is the mean curvature vector of 𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡 ⊂ 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚  at 𝐱𝐱𝐱𝐱(𝑝𝑝𝑝𝑝, 𝑡𝑡𝑡𝑡). Thus, the variational vector field of 
the mean curvature flow is the mean curvature vector. 

The most well-known example of mean curvature flow is the evolution of soap films. Intuitively, a family of 
submanifolds evolves under mean curvature flow if the normal component of the velocity of which a point on the 
submanifolds moves is given by the mean curvature vector. The mean curvature flow of a surface extremalizes 
surface area. Further, minimal surfaces are the critical points for the mean curvature flow. 

A submanifold 𝑀𝑀𝑀𝑀 ⊂ 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 is called a self-shrinker if it satisfies the following quasilinear elliptic system: 

𝐻𝐻𝐻𝐻 = −𝐱𝐱𝐱𝐱⊥                                                                                                                                                              (7.2) 

Self-shrinkers have the property that their evolution under the action of the mean curvature flow is a shrinking 
homothety. The study of self-shrinkers is important since the blow-up of the mean curvature flow at a singularity, 
under certain assumptions, is self-shrinking. 

Now let us mention the following known results on self-shrinkers: 

(1) U. Abresch and J. Langer classified in [66] self-shrinker closed curves in 𝔼𝔼𝔼𝔼2. They proved that circles are 
the only imbedded self-shrinkers in 𝔼𝔼𝔼𝔼2. 

(2) G. Huisken studied in [67] compact self-shrinkers, and proved that if a compact self-shrinker hypersurface 
in 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 has non-negative mean curvature, then it is a hypersphere of 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 with radius √𝑛𝑛𝑛𝑛. 



11 
Athena Transactions in Mathematical and Physical Sciences, Volume 1 

Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) 
 

 

(3) Compact imbedded self-shrinker 𝑆𝑆𝑆𝑆1 × 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛−1(√𝑛𝑛𝑛𝑛 − 1) ⊂ 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 was constructed by S. B. Angenent in [68]. 

(4) A. Kleene and N.M. Moller proved in [69] that a complete imbedded self-shrinking hypersurface of 
revolution in 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 is isometric to 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛 ,𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛(√𝑛𝑛𝑛𝑛), 𝐑𝐑𝐑𝐑× 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛−1(√𝑛𝑛𝑛𝑛 − 1), or 𝑆𝑆𝑆𝑆1 × 𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛−1(√𝑛𝑛𝑛𝑛 − 1). 

(5) N.Q. Le and N. Sesum proved in [70] that if 𝑀𝑀𝑀𝑀 is a complete embedded selfshrinker hypersurface in 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 
with polynomial volume growth and ∥ ℎ ∥< 1, then ℎ = 0, where ℎ denotes the second fundamental form; 
thus 𝑀𝑀𝑀𝑀 is isometric to the hyperplane. 

In recent years, there are many articles studying self-shrinkers with arbitrary codimension (see for example 
[45,67,70,71,72,73,74,75,76,77,78,79,80,81]). Nowadays, the study of self-shrinkers is quite an active research 
topic and much more remains to be done. 

8. TOPIC VI: DIFFERENTIAL GEOMETRY OF CANONICAL VECTOR FIELDS 

In Topic V, we discussed self-shrinkers which involve the normal component 𝐱𝐱𝐱𝐱⊥ of the position vector field 𝐱𝐱𝐱𝐱 of a 
submanifold 𝑀𝑀𝑀𝑀 ⊂ 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚. In this section, we discuss the case in which the tangent component 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇  plays an important 
role. Obviously, 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇  is the most natural vector field tangent to 𝑀𝑀𝑀𝑀, which is called the canonical vector field of 𝑀𝑀𝑀𝑀. 

8.1. Differential Geometry of Canonical Vector Fields 

We present some known results on Euclidean submanifolds whose canonical vector fields are of special types. 

Recall that a vector field on a Riemannian manifold is called conservative if it is the gradient of a scalar function. 
Such vector fields appear naturally in mechanics. Conservative vector fields have the important property that the 
line integral is path independent. They represent forces of physical systems in which energy is conserved. 

A vector field on a Riemannian manifold is called incompressible if it is a vector field with divergence zero at all 
points in the field. An important family of incompressible vector fields are magnetic fields. Magnetic fields are 
widely used in modern technology, particularly in electrical engineering and electromechanics (see e.g. [71]). 

Concerning conservative and incompressible vector fields, we have the following two results from [82]: 

Theorem 8.1. Let 𝑀𝑀𝑀𝑀 be a submanifold of 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚. Then: 

(1) The canonical vector field of 𝑀𝑀𝑀𝑀 is always conservative. 

(2) The canonical vector field of 𝑀𝑀𝑀𝑀 is incompressible if and only if position vector and mean curvature vector of 
𝑀𝑀𝑀𝑀 satisfy ⟨𝐻𝐻𝐻𝐻,𝒙𝒙𝒙𝒙⟩ = −1 identically. 

As an application of this theorem, we have the following result: 

Theorem 8.2. Every equivariantly isometrical immersion of a compact homogeneous Riemannian manifold into a 
Euclidean space has an incompressible canonical vector field. 

For further results on submanifolds with incompressible canonical vector fields, see [83]. A vector field 𝑣𝑣𝑣𝑣 on a 
Riemannian manifold 𝑀𝑀𝑀𝑀 is called a conformal vector field if it satisfies: 

ℒ𝑣𝑣𝑣𝑣𝑔𝑔𝑔𝑔 = 2𝜑𝜑𝜑𝜑𝑔𝑔𝑔𝑔                                                                                                                                                          (8.1) 

where ℒ is the Lie derivative and 𝜑𝜑𝜑𝜑 is a scalar function called the potential function. 

The next two results from [31] characterize Euclidean submanifolds with a conformal canonical vector field: 

Theorem 8.3. Let 𝑀𝑀𝑀𝑀 be a submanifold of a Euclidean space. Then the canonical vector field of 𝑀𝑀𝑀𝑀 is a conformal 
vector field if and only if 𝑀𝑀𝑀𝑀 is umbilical with respect to the normal component 𝒙𝒙𝒙𝒙𝑁𝑁𝑁𝑁 of the position vector 𝒙𝒙𝒙𝒙. 

For hypersurfaces, we have the following: 

Corollary 8.1. Let 𝑀𝑀𝑀𝑀 be a proper hypersurface of 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 with conformal canonical vector field. Then either: 
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(1) 𝑀𝑀𝑀𝑀 lies in a hypersphere centered at the origin of 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1; or 

(2) 𝑀𝑀𝑀𝑀 lies in a hyperplane which does not contain the origin of 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1. 

A non-trivial vector field 𝑣𝑣𝑣𝑣 on a Riemannian manifold (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔) is called a concircular vector field if and only if it 
satisfies: 

∇𝑋𝑋𝑋𝑋𝑣𝑣𝑣𝑣 = 𝜑𝜑𝜑𝜑𝑋𝑋𝑋𝑋                                                                                                                                                            (8.2) 

for some scalar function 𝜑𝜑𝜑𝜑. In particular, if 𝜑𝜑𝜑𝜑 = 1, then 𝑣𝑣𝑣𝑣 is called a concurrent vector field. 

The following result was proven by the author and S.W. Wei in [84]: 

Theorem 8.4. Let 𝑀𝑀𝑀𝑀 be a submanifold of a Euclidean space. Then the canonical vector field of 𝑀𝑀𝑀𝑀 is conformal if and 
only if it is concircular. 

The next result characterizes rectifying submanifolds via a canonical vector field: 

Theorem 8.5. If 𝑀𝑀𝑀𝑀 is a proper submanifold of Euclidean space, then the canonical vector field of 𝑀𝑀𝑀𝑀 is a concurrent 
vector field if and only if 𝑀𝑀𝑀𝑀 is a proper rectifying submanifold [27,35]. 

According to K. Yano [85], a vector field 𝑣𝑣𝑣𝑣 on a Riemannian manifold 𝑀𝑀𝑀𝑀 is called torse-forming if it satisfies: 

∇𝑋𝑋𝑋𝑋𝑣𝑣𝑣𝑣 = 𝜑𝜑𝜑𝜑𝑋𝑋𝑋𝑋 + 𝛼𝛼𝛼𝛼(𝑋𝑋𝑋𝑋)𝑣𝑣𝑣𝑣          ∀𝑋𝑋𝑋𝑋 ∈ 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀                                                                                                              (8.3) 

for any vector 𝑋𝑋𝑋𝑋 tangent to 𝑀𝑀𝑀𝑀, where 𝜑𝜑𝜑𝜑 is a scalar function and 𝛼𝛼𝛼𝛼 is a 1-form on 𝑀𝑀𝑀𝑀. A torse-forming vector field 𝑣𝑣𝑣𝑣 
is called proper torse-forming if the 1-form 𝛼𝛼𝛼𝛼 in Eq. (8.3) is nowhere zero on a dense open subset of 𝑀𝑀𝑀𝑀. A torqued 
vector field is a torse-forming vector field 𝑣𝑣𝑣𝑣 satisfying Eq. (8.3) with 𝛼𝛼𝛼𝛼(𝑣𝑣𝑣𝑣) = 0 (see [86,87,88]). 

In [89], the author and L. Verstraelen provide a link between hypersurfaces with a torse-forming canonical vector 
field and rotational hypersurfaces. More precisely, they proved the following: 

Theorem 8.6. Let 𝑀𝑀𝑀𝑀 be a hypersurface of 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 with 𝑛𝑛𝑛𝑛 ≥ 3. Then the canonical vector field of 𝑀𝑀𝑀𝑀 is a proper torse-
forming vector field if and only if 𝑀𝑀𝑀𝑀 is contained in a rotational hypersurface whose axis of rotation contains the 
origin. 

For further results in this direction, see the survey articles [90,91]. 

8.2. Ricci Solitons With Canonical Vector Fields as Soliton Fields 

Ricci flows and Ricci solitons were introduced by R. Hamilton in the 1980s. A vector field 𝜂𝜂𝜂𝜂 on a Riemannian 
manifold (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔) is said to define a Ricci soliton if it satisfies the Ricci soliton equation: 

1
2ℒ𝜂𝜂𝜂𝜂𝑔𝑔𝑔𝑔+  Ric = 𝜆𝜆𝜆𝜆𝑔𝑔𝑔𝑔                                                                                                                                            (8.4) 

where Ric is the Ricci tensor and 𝜆𝜆𝜆𝜆 is a constant (see e.g. [92,93,94] ). The vector field 𝜂𝜂𝜂𝜂 in Eq. (8.4) is called the 
potential field. We denote such a Ricci soliton by (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔, 𝜂𝜂𝜂𝜂, 𝜆𝜆𝜆𝜆). A Ricci soliton (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔, 𝜂𝜂𝜂𝜂, 𝜆𝜆𝜆𝜆) with dim 𝑀𝑀𝑀𝑀 ≥ 3 is called 
trivial if the Riemannian manifold (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔) is an Einstein manifold. 

The next result was obtained in [88]: 

Theorem 8.7. Let (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔, 𝜂𝜂𝜂𝜂, 𝜆𝜆𝜆𝜆) be a Ricci soliton whose potential field 𝜂𝜂𝜂𝜂 is a torqued vector field. Then (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔, 𝜂𝜂𝜂𝜂, 𝜆𝜆𝜆𝜆) is 
trivial if and only if 𝜂𝜂𝜂𝜂 is a concircular vector field. 

Compact Ricci solitons are the fixed points of the Ricci flow: ∂𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡)
∂𝑡𝑡𝑡𝑡

= −2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡)) projected from the space of 
metrics onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci 
flow on compact manifolds. Further, Ricci solitons model the formation of singularities in the Ricci flow and they 
correspond to self-similar solutions (see e.g. [80]). 
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Since the early 1980s, the geometry of Ricci solitons has been the focus of attention of many mathematicians. 
Especially, it has become more important after Grigori Perelman applied Ricci flows to solve the long standing 
Poincaré conjecture proposed in 1904. 

Next, we focus on the problem: 

"When does a Ricci soliton on a Euclidean submanifold have the canonical vector field as its potential field?" 

Such solitons have been studied in [87,92,95,96,97,98], among others. In particular, the following result classified 
Ricci solitons on a hypersurface 𝑀𝑀𝑀𝑀 of 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 with its canonical vector field as the soliton field. 

Theorem 8.8. [98] Let (𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛 ,𝑔𝑔𝑔𝑔, 𝜂𝜂𝜂𝜂, 𝜆𝜆𝜆𝜆) be a Ricci soliton on a hypersurface of 𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛 ⊂ 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1 such that the potential field 
𝜂𝜂𝜂𝜂 is the canonical vector field. Then 𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛 is one of the following five types of hypersurfaces: 

(1) A hyperplane through the origin. 

(2) A hypersphere centered at the origin. 

(3) An open part of a flat hypersurface generated by lines through the origin. 

(4) An open part of a circular hypercylinder 𝑆𝑆𝑆𝑆1(𝑑𝑑𝑑𝑑) × 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛−1, 𝑑𝑑𝑑𝑑 > 0. 

(5) An open part of a spherical hypercylinder 𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘(√𝑘𝑘𝑘𝑘 − 1) × 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛−𝑘𝑘𝑘𝑘 , 2 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛 − 1. 

For further results in this direction, see [87,92,95,96,97]. 

8.3. Yamabe Solitons With Canonical Vector Fields as Soliton Fields 

Yamabe flow was also introduced by R. Hamilton [99] at the same time as the Ricci flow. It deforms a given 
manifold by evolving its metric according to: 

∂
∂𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡) = −𝜌𝜌𝜌𝜌(𝑡𝑡𝑡𝑡)𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡)                                                                                                                                        (8.5) 

where 𝜌𝜌𝜌𝜌(𝑡𝑡𝑡𝑡) denotes the scalar curvature of the metric 𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡). Yamabe solitons correspond to self-similar solutions 
of the Yamabe flow. In dim 𝑀𝑀𝑀𝑀 = 2, the Yamabe and Ricci flows are the same. When dim 𝑀𝑀𝑀𝑀 = 𝑛𝑛𝑛𝑛 > 2, the Yamabe 
and Ricci flows do not agree, since a Yamabe flow preserves the conformal class of the metric, but the Ricci flow 
does not in general. 

A Riemannian manifold (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔) is a Yamabe soliton if it admits a vector field 𝑋𝑋𝑋𝑋 such that: 

1
2ℒ𝑋𝑋𝑋𝑋𝑔𝑔𝑔𝑔 = (𝜌𝜌𝜌𝜌 − 𝜆𝜆𝜆𝜆)𝑔𝑔𝑔𝑔                                                                                                                                             (8.6) 

where 𝑋𝑋𝑋𝑋 is a vector field 𝑋𝑋𝑋𝑋 and 𝜆𝜆𝜆𝜆 is a real number. Moreover, the vector field 𝑋𝑋𝑋𝑋 is called a soliton field.  

We denote the Yamabe soliton satisfying Eq. (8.6) by (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔,𝑋𝑋𝑋𝑋, 𝜆𝜆𝜆𝜆). 

A Riemannian manifold (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔) is called a quasi-Yamabe soliton if it admits a vector field 𝑋𝑋𝑋𝑋 such that 

1
2ℒ𝑋𝑋𝑋𝑋𝑔𝑔𝑔𝑔 = (𝜌𝜌𝜌𝜌 − 𝜆𝜆𝜆𝜆)𝑔𝑔𝑔𝑔 + 𝜇𝜇𝜇𝜇𝑋𝑋𝑋𝑋# ⊗𝑋𝑋𝑋𝑋#                                                                                                                    (8.7) 

for some constant 𝜆𝜆𝜆𝜆 and scalar function 𝜇𝜇𝜇𝜇, where 𝑋𝑋𝑋𝑋# is the dual 1-form of 𝑋𝑋𝑋𝑋. The vector field 𝑋𝑋𝑋𝑋 is also called a 
soliton field for the quasi-Yamabe soliton. We denote the quasi-Yamabe soliton satisfying Eq. (8.7) by 
(𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔,𝑋𝑋𝑋𝑋, 𝜆𝜆𝜆𝜆, 𝜇𝜇𝜇𝜇). A Yamabe (or quasi-Yamabe) soliton is called shrinking, steady or expanding if it admits a soliton 
field for which 𝜆𝜆𝜆𝜆 > 0, 𝜆𝜆𝜆𝜆 = 0 or 𝜆𝜆𝜆𝜆 < 0, respectively. 

Now, we discuss Yamabe and quasi-Yamabe solitons on Euclidean submanifolds such that the potential fields are 
given by their canonical vector fields. Such solitons have been studied in [31,100], among others. 

From [31], we have the following result: 

Theorem 8.9. If a Euclidean submanifold 𝑀𝑀𝑀𝑀 of 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 is a Yamabe soliton with the canonical vector field as its soliton 
field, then the canonical vector field is a conformal vector field. 
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As a natural extension of self-shrinker, a Euclidean submanifold 𝑀𝑀𝑀𝑀 is called a generalized self-shrinker if it satisfies: 

𝐱𝐱𝐱𝐱⊥ = 𝑓𝑓𝑓𝑓𝐻𝐻𝐻𝐻                                                                                                                                                               (8.8) 

for some scalar function 𝑓𝑓𝑓𝑓. From [31], we also have the following: 

Theorem 8.10. Let 𝑀𝑀𝑀𝑀 be a generalized self-similar submanifold of the Euclidean 𝑚𝑚𝑚𝑚-space 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚. Then the canonical 
vector field of 𝑀𝑀𝑀𝑀 is a conformal vector field if and only if 𝑀𝑀𝑀𝑀 is a pseudo-umbilical submanifold. 

For Yamabe solitons, we also have the following: 

Theorem 8.11. Let (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔) be a Riemannian manifold. Then an isometric immersion 𝜙𝜙𝜙𝜙: (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔) → 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−1 ⊂ 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚  of 𝑀𝑀𝑀𝑀 
into the hypersphere of 𝔼𝔼𝔼𝔼𝑚𝑚𝑚𝑚 centered at the origin is a Yamabe soliton with the canonical vector field as its soliton 
field if and only if 𝑀𝑀𝑀𝑀 has constant scalar curvature [100]. 

This theorem implies that there exist ample examples of Yamabe solitons with the canonical vector field as the 
soliton fields. 

From [31], we have the next two results: 

Theorem 8.12. Let 𝑀𝑀𝑀𝑀 be a proper hypersurface of 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1. If (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔, 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇 , 𝜆𝜆𝜆𝜆,𝜇𝜇𝜇𝜇) is a quasi-Yamabe soliton with 𝜇𝜇𝜇𝜇 ≠ 0, then 
𝑀𝑀𝑀𝑀 is a quasi-umbilical hypersurface with the canonical vector field as its distinguished direction. Moreover, the 
canonical vector field is a torse-forming vector field. 

The next result follows from Theorem 8.11 and Theorem 6 in [89]: 

Theorem 8.13. Let 𝑀𝑀𝑀𝑀 be a proper hypersurface of 𝔼𝔼𝔼𝔼𝑛𝑛𝑛𝑛+1. If (𝑀𝑀𝑀𝑀,𝑔𝑔𝑔𝑔, 𝐱𝐱𝐱𝐱𝑇𝑇𝑇𝑇 , 𝜆𝜆𝜆𝜆,𝜇𝜇𝜇𝜇) is a quasi-Yamabe soliton with 𝜇𝜇𝜇𝜇 ≠ 0, then 
𝑀𝑀𝑀𝑀 is an open portion of a rotational hypersurface whose axis of rotation contains the origin. 

For further results in this direction, see [31,100]. 
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