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1. SUPERCIRCLES AND SUPERELLIPSES 

1.1. Supercircles and Their Pi’s 

ChatGPT provides the following response when asked to provide information on the superformula: “The 
Superformula is a mathematical formula first introduced by Johan Gielis in 2003. It is a generalization of the 
traditional mathematical formula for simple shapes such as circles and ellipses and can be used to describe a much 
wider range of shapes, including shapes that are complex and organic in nature. The superformula has been applied 
in a number of fields, including computer graphics, biology and physics, and is known for its versatility and simplicity. 
It has been called "the most beautiful formula" by some mathematicians and scientists”. Following the original 
publication [1,2] the Superformula has been applied in many fields [3]. The focus of this contribution is on 
applications in technology. Some may even have the potential to change entire industries. The “Superformula” as 
we know it today, actually saw the day of light in the summer of 1997. It is a generalization of the Cartesian 
equation describing supercircles and superellipses. 

Superellipses and supercircles are a subset of so-called Lamé curves. Gabriel Lamé (1795-1870) was the first to 
generalize the Cartesian equation of ellipses [4]: 
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for 𝑛𝑛𝑛𝑛 a positive integer number. Lamé developed this to model crystals, and the use of absolute values ensures 
that curves are closed. Euzet later studied the case when the exponent 𝑛𝑛𝑛𝑛 is different for 𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑦𝑦. Supercircles (for 
𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑏𝑏) and superellipses are Jordan curves that have point symmetry and two axial symmetries about the origin. 
Any such curve with 𝑛𝑛𝑛𝑛 ≠ 2 has only four points in common with the circle. Shapes with 𝑛𝑛𝑛𝑛 >  2 are called 

In 1997, the Superformula was developed as a generalization of superellipses and 
supercircles. An overview is given of the various developments that led to this 
generalization and its extensions to 3D. From the earliest steps onwards, optimization in 
nature and technology has been a driving force. 
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supercircles (circumscribing the circle with 𝑛𝑛𝑛𝑛 = 2), and those with 𝑛𝑛𝑛𝑛 <  2 are called subcircles, inscribed in the 
circle (Fig. 1). Supercircles have a zone of infinite curvature, called Flachpunkt [5]. Recently, also negative 
exponents were considered for superellipses [6]. For a general treatment of Lamé curves, with or without 
absolute values, see chapter 1 in [7]. 

To determine area, all calculations on these curves were done with Cartesian coordinates [8,9]. In practice, this 
caused computational problems, especially at the points where the curve intersects the X-axis. When using 
Cartesian coordinates, the slope for the superellipse is infinite as x approaches a. 
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In 1997, it could be shown that computations would be easier and more effective if polar coordinates were used 
[10]. The distance from the pole is called the radial coordinate, radial distance or simply radius (r) and the angle 
is called the polar angle. The transition of the equation for superellipses from Cartesian to polar coordinates is 
straightforward: 
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   with  𝑟𝑟𝑟𝑟 ∈ ℝ+        (2) 

This derivation is documented in the thesis “Supershapes, roots and bamboo” [10] and forms the first step 
towards the superformula. This methodology enabled stabler and faster numerical computational methodologies 
for perimeter, area and moments of inertia, in engineering applications. 

1.2. Pi Is a Function 

For each of the shapes, specific trigonometric functions can be defined [10,11]. Fig. 2 shows cosines and sines for 
various values of n (0.5, 1, 2, 5 and 20). It later turned out that there was already a large body of literature on the 
subject [12,13] and these functions give rise to Pythagorean Theorems adapted to the shape [14]. With each 
shape, a very specific Pythagorean Theorem is associated [13,14]. Alternatively, Eq. (2) can be considered as a 
transformation of a circle but can also transform other functions. Fig. 3 shows the transformation of the classical 
tangent function via multiplication of the radial function. 

Figure 1. A set of basic superellipses. 
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Figure 2. Cosines and sines on supercircles for 𝑛𝑛𝑛𝑛 = 0.5, 1, 2, 5, 20. 

     
Figure 3. Left: tangent functions with operator. Right: cosine and sine in Eq. (2) are replaced by cotan and tan respectively. 
For both panels graphs are shown for 𝑛𝑛𝑛𝑛 = 0.5, 1, 2, 5, 20. 

Pi is the ratio of the circumference of a circle to its diameter, or half the circumference to its radius. Using the idea 
of Gabriel Lamé, one possible generalization is to calculate the circumference of the Lamé-shape and divide it by 
the distance between the points at 0° and 180°. As the Lamé-shape has a combination of mirror- and point 
symmetries, we can calculate the length of the curve over 45° and multiply that value by 8 to get to the 
circumference of a full shape. 

When defining the length of the halfperimeter of a supercircle as 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛 for a given value of 𝑛𝑛𝑛𝑛, then 𝜋𝜋𝜋𝜋 = 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛=2 (the 
ratio of the circumference of a circle to its diameter, or half the circumference to its radius) is a special case of a 
more general 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛 . It can be seen that 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛 , as function of shape for each supercircle, is bounded between 2√2 and 4. 
Interestingly, the form with exponent 1 has the lowest value for 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛 . Then there are two forms that have the 
conventional value of 8 (Fig. 4 left). Using logarithmic scale, the values for 𝑛𝑛𝑛𝑛 < 2 become clearer (Fig. 4 right). 

It can be seen that for any Lamé-shape the 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛-function is limited between 2√2 and 4, and the former bound is 
associated with the inscribed square (𝑛𝑛𝑛𝑛 = 1), and the latter with the circumscribing square (𝑛𝑛𝑛𝑛 → ∞). 

It is also observed that there are two shapes that have the conventional value of 𝜋𝜋𝜋𝜋. One case is the circle, the other 
is the shape with (𝑛𝑛𝑛𝑛 ≅ 0.561494). One quarter of 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛=2 and 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛=0.561494 is then 𝜋𝜋𝜋𝜋4, and for reasons of symmetry, the 
areas A and B in Fig. 4 have the same area. Further, the subcircular segment between 0 and 90° is part of a circle. 
Such constructions have been used in architecture, for windows. The combination of circles (𝑛𝑛𝑛𝑛 = 2) and of 
subcircles with 𝑛𝑛𝑛𝑛 = 0.561494 allows for a perfect tiling of the plane (Fig. 5). 
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Figure 4. 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛 values. The solid grey line is 𝜋𝜋𝜋𝜋𝑛𝑛𝑛𝑛=2. The right panel has the x-axis in logarithmic scale. 

      
Figure 5. Left: supercircles with exponent 2, 0.561494 and 1. Right: front door of the house of Simon Stevin (1548-1620) 
in The Hague, Netherlands. 

2. THE SUPERFORMULA 

Despite their usefulness for modeling stems of quadratic bamboos and plants in general, a major drawback of 
superellipses and supercircles is their restriction to 4-symmetry, which means that all quadrants have essentially 
the same shape. In the summer of 1997, Johan Gielis was deep in thought about plants and the results obtained 
in [10] when he understood that the shapes would have different symmetry values if you changed the base 
frequency of the function 𝑟𝑟𝑟𝑟(φ). His inspiration was based on Rhodonea curves defined by 𝜌𝜌𝜌𝜌(𝜗𝜗𝜗𝜗) = cos(𝑚𝑚𝑚𝑚𝜗𝜗𝜗𝜗) where 
𝑚𝑚𝑚𝑚 is in general an integer or a rational number (Fig. 6). 

                
Figure 6. Rhodonea curves for integer and non-integer values of m. The left one is also shown in [15]. 
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By using this insight, the superformula was born [1,2]. Below the various steps are described. 
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The symmetry parameter 𝑚𝑚𝑚𝑚 divides the plane in 𝑚𝑚𝑚𝑚 sectors, and 𝑚𝑚𝑚𝑚 = 4 gives the number of quadrants in the 
original superellipse. This opened up many new possibilities, as not only triangular, pentagonal or higher 
symmetries could be defined, but also monogons, digons and even zerogons could be defined for 𝑚𝑚𝑚𝑚 = 1, 2, 0, 
respectively (Fig. 7). Obviously a zerogon is a circle, having no angles or edges. 

Other changes to the superformula included generalizations of exponents and the use of the superformula as a 
transformation on planar functions (Eq. (4), Fig. 8). Like in Rhodonea curves, m can be an integer, a rational or an 
irrational number. 
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The superformula can indeed be considered as a transformation on functions. If multiplied by a constant value, 
supercircles result, but 𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑) can also be trigonometric functions (or Rose/Rhodonea curves, Fig. 8 right), or 
spirals, both based on observations in botany [1,2,16,17]. In the past decades, over 40,000 biological specimens 
have been tested showing that the Superformula has developed into an excellent scientific method [18]. 

Introducing a rotation is achieved by introducing phase differences (Fig. 9 left) and different phases lead to 
shearing-like transformations (Fig. 9 center and Fig. 9 right). Also, the trigonometric functions can be different. 
In Fig. 2 the trigonometric functions cos and sin are replaced by cotan and tan: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 → 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎;  𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 → 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. The use 
of Jacobi elliptic functions was proposed in [19] and the full generality of replacing trigonometric functions by 
other functions, including polynomials, is discussed in [20]. Examples are shown in Fig. 10. 

                 
Figure 7. Supercircles (left) and supershapes (right). Both the shapes and the values of 𝑟𝑟𝑟𝑟(φ) – the distance to the origin 
– are shown. 
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Figure 8. Left: a set of four subshapes: “zero”-angular, mono-angular, bi-angular and quadrangular. Right: Eq. (4) with 
𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑚𝑚𝜑𝜑𝜑𝜑); the bottom row shows the supershapes in which 𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑) is inscribed [21]. 

         
Figure 9. Difference between alfa and beta phase. Left: 𝑚𝑚𝑚𝑚 = 4, 𝑛𝑛𝑛𝑛1,2,3 =  5;  𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽. Center: 𝛼𝛼𝛼𝛼 = 𝜋𝜋𝜋𝜋

4
; 𝛽𝛽𝛽𝛽 = 0. Right: 𝛼𝛼𝛼𝛼 =

0;  𝛽𝛽𝛽𝛽 = 𝜋𝜋𝜋𝜋
4

; with different values for 𝑛𝑛𝑛𝑛1,2,3. 

Figure 10. Examples of generalized Gielis transformations [20]. 
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3. EXTENDING THE SHAPE PALETTE 

3.1. Variations With C-Points 

Initial developments focused on the graphics industry. Graphic artists and designers, confronted with the 
challenge of developing new designs and shapes in 2D and 3D, are constantly looking for new shapes and patterns. 
Based on the original Superformula, variational shapes can be introduced in a variety of software products. 

For Adobe Illustrator and Photoshop a plug-in was developed for users to experiment with 2D shapes, but also 
with combinations of these shapes. Supergraphx products and applications provide such solutions for graphic 
arts in 2D, 3D and animation. Supergraphx transforms the PC from being a computing tool into an extension of 
human imagination and creativity, capable of generating anything one can think of. In this graphical user interface 
parameter 𝑚𝑚𝑚𝑚 could be integer, rational or irrational. Furthermore, C-points were introduced, a name chosen to 
reflect both Creativity and Controllability. For every C-point, another set of parameter values in Eq. (4) could be 
assigned and between these C-points appropriate transition functions can be defined [22]. 

This added important new features for graphic artists in 2D, giving them access to a vast number of new shapes. 
The controllability of the shapes does not allow full control, since these features are already present in the vector-
based drawing software of Illustrator and Photoshop. While providing the user with a diversity of forms (Fig. 11, 
Fig. 12) generated in real time, the program also allows the user to change and control the results, either using 
the C-points or through native Illustrator technology. In addition, the interface also allows for variation. When 
‘variation’ is clicked, the user will see a collection of nine shapes that differ more or less from the initial shape, in 
one or more of the parameters of the formula, including C-points. When clicking on one of these shapes, nine other 
shapes will appear, and clicking will generate a myriad of different shapes in real time. The shapes can then be 
stored and used again, either from storage or the Supergraphx toolbar. The shapes in variations are all unique 
because of the sampling of the parameters over the real numbers. The limited controllability has specific 
advantages as the user is no longer in full control, but the computer can or will surprise the user. Furthermore, 
Supergraphx also allows for major savings of time in making shapes in vector-based drawing programs. 

3.2. Extensions to 3D  

Implicit functions based on one single equation can provide different solutions for problems in computer graphics 
and CAD [23,24]. In this sense, Eq. (4) can be used advantageously for CAD for a unified description of a wide 
variety of shapes, using a single formula allowing for extremely compact file sizes. There are a variety of ways to 
extend superellipses and Eq. (4) into 3D, but the selected one is based on the parametric formulation of a sphere, 
defining two supershapes perpendicular to each other, one as 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) and the other as  𝑓𝑓𝑓𝑓2(𝜑𝜑𝜑𝜑). Superformula 
distances are applied directly on two perpendicular sections [25,26]: 

𝑥𝑥𝑥𝑥 = 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝜃𝜃 ∙   𝑓𝑓𝑓𝑓2(𝜑𝜑𝜑𝜑) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝜑𝜑 

𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 𝜃𝜃𝜃𝜃 ∙   𝑓𝑓𝑓𝑓2(𝜑𝜑𝜑𝜑)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝜑𝜑                                                                                                                          (5) 

𝑧𝑧𝑧𝑧 = 𝑓𝑓𝑓𝑓2(𝜑𝜑𝜑𝜑) 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 𝜑𝜑𝜑𝜑 

Figure 11. Variations on a shape, as suggested by the software. The user can either choose one of those as the final 
product or as a starting shape for further exploration. 
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Figure 12. Supergraphx generates an unlimited variety of unique new shapes based on the Superformula. The shapes 
above were made in less than 10 minutes. 

Eq. (5) can be formulated alternatively as operation 𝑓𝑓𝑓𝑓1(𝜃𝜃𝜃𝜃) ⊗ 𝑓𝑓𝑓𝑓2(𝜑𝜑𝜑𝜑), the product of object and path. This operation 
can, for example, be square ⊗ square → cube, circle ⊗ circle → sphere, circle ⊗ rectangle → cylinder, circle ⊗ big 
circle → torus, square ⊗ big square → square torus. The tori were developed by giving the height profile an offset 
from the center of the coordinate system. The base profile became the path over which the height profile is swept, 
and if both path and profile are square, then a square torus results (Fig. 13, Fig. 14). Along the path, the cross 
section could also rotate, leading to a twisted shape (Fig. 14). 

 
Figure 13. 3D supershapes based on Eq. (5). 

 
Figure 14. The marked objects had one cross section with an offset from the coordinate system's center line. In the orange 
boxes, toroidal structures are shown. Bottom row, fourth shape from the left, shows a twisted structure. 
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Figure 15. Examples of generalized cylinders and helices. In green, the cross section changes along the path. 

This provides a straightforward and intuitive expression for 3D shapes and allows for the development of a simple 
interface to draw 3D shapes based on two perpendicular sections. In comparison with the sphere, superquadrics 
and superellipsoids [7,27], various symmetries are possible in different dimensions. In three dimensions non-
integer symmetries generate self-intersecting shapes that do not close in one rotation. 

Eq. (5) can define a variety of 3D shapes, many of which are well-known primitives, including the well-known 
extrusions and revolve operations. In addition, knots, helices and spirals can easily be made as well within the 
same equation. Because of their very nature, not only the outer boundaries of the shapes are defined, but any 
point on, inside or outside the shape is defined as well (see Fig. 12). A first understanding of the combination of 
base and height profiles was developed (Fig. 13, Fig. 14) and a Computational Solid Geometry CSG-type modeler 
was also in an embryonic phase. Development went into higher gear in 2002 and 2003 at Genicap Corporation. 
Further exploration of the Superformula with multiple symmetries enabled us to massively extend the primitives 
palette. Along with geometry exploration, numerical calculations and optimization techniques were developed 
not only for prismatic objects but also for toroidal and helical types of geometry (Fig. 15). 

By adding a further generalization – a height parameter in function of the base angle was added – the tori were 
opened up and generalized helices became possible, as extension of generalized cylinders, even enabling 
morphing from one section type to another over the length of the cylinder’s path (Fig. 15). These developments 
later merged with the research on Generalized Möbius-Listing surfaces and bodies [28,29]. 

3.3. 3D Shape Explorer 

By changing the parameters of the Superformula, the 3D artist and designer can explore the universe of 
mathematical objects defined by Superformula equations. The 16 shapes in Fig. 16 left are just a sample from 
more than 400 interesting shapes made in a 60-minute session using Supergraphx 3D Shape Explorer and a plugin 
for Cinema 4D. In such a brief session, the artist or designer can generate and evaluate hundreds of different new 
shapes. The most interesting ones can be selected and stored. A selection can be exported to rendering software 
for the appropriate texturing and lighting. The computer becomes an extension of human creativity, saving time 
and moving in entirely new directions to develop a stream of unique shapes. User testimonials of Supergraphx 
show that “it is like having a brain-storming session with your computer”. Using periodic functions for the path also 
allows for toroidal structures avoiding self-intersections (Architon, Fig. 16 right) [25,26]. 

3.4. Constructive Solid Geometry and Computer-Aided Design 

Furthermore, only extremely small file sizes are needed. Each of these shapes is encoded in less than 40 bytes. 
Using the shape generator, very complex shapes can be constructed and all shapes can be encoded in less than 20 
bytes. The geometric information of all Future Fossils (Fig. 16 left) is stored in 500 bytes only, which is less than 
the shortcut pointing to that file. Therefore, it is possible to fully encode complex shapes in extremely small files. 
This Shape Explorer was integrated in a modeler with full parts-assembly structure with definition of Boolean 
structure. A CSG-type (Constructive Solid Geometry) modeler basically combines shapes using Boolean 
operations. Classic systems that were on the market at the time were rather primitive and limited to basic shapes 
which all had to be coded separately. Our approach was to make use of the parametric properties of the 
Superformula. It was also integrated as a plugin for Cinema 4D and today one finds it also in Blender. 
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Figure 16. Future Fossils [30] (left) and Architon (right). 

As every shape had the same parameter set, but only changed in shape and size by the value of those parameters, 
it was understood immediately that the Superformula would be able to define complex geometries with an 
absolute minimum of data (Fig. 17). A further development was by using R-functions to combine supershapes, 
allowing to define controllable potential fields on the shapes (Fig. 18) [31,32,33]. R-functions [34] form a natural 
alliance with superellipses [35,36]. 

4. OPTIMIZATION 

4.1. Formulae for Engineering and Biology 

In [10] the polar representation of superellipses was used for computations of area, circumference and inertial 
moments. After the addition of the symmetry parameter in 1997 (Eq. (4)), focus was set on geometrical 
exploration and development of tools to compute properties of 2D and 3D shapes. All were based on polar and 
spherical coordinates. 

Figure 17. CSG models with file sizes all below 1 kB. 
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Figure 18. Top: truck axis, consisting of ~250 supershaped parts and ~250 boolean operations. Bottom: view of turbine 
blades with potential fields [31]. 

If we put: 

𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟(𝜑𝜑𝜑𝜑) =
1
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𝑛𝑛𝑛𝑛2
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Then the area of a supercircle is: 

𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 = �
𝑟𝑟𝑟𝑟2
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For the polar moment of inertia 𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝 of a 2D supershape, in two orthogonal directions x and y: 
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In the same way: 
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Since the polar moment of inertia is the sum 𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝 = 𝐼𝐼𝐼𝐼𝑥𝑥𝑥𝑥 + 𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦 , we have: 
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In the study of square bamboos, which were at the origin of describing natural shapes as superellipses [1,2,37,38], 
one can easily compute these characteristics for each cross section. Previously, researchers had to resort to 
specific formulas from engineering, for beams with well-defined cross sections (elliptic, square, circular, T or I 
beams, ...). Now shapes can be studied with well-defined formulas over a continuous change of cross-sectional 
geometry along its length and layer thickness. In a study on the structural morphology of petioles of Philodendron 
melinonii and rhubarb, the shape of the petioles was modeled with Eq. (4) [39,40]. 

The sections of petioles were scanned and analyzed using the full six parameter set of the Gielis transformations. 
This was further used to assess the influence of different tissues (parenchyma versus collenchyma) on the 
torsional stiffness. 

The model is also dynamic: the size and shape of cross sections (area and perimeter) of cacti change depending 
on how much water is stored in the cactus: it will expand after rainfall and shrink in drier periods. Having these 
characteristics available immediately permits the study of such ratios such as area/perimeter (compactness) or 
area/polar moment of inertia, etc. In various cases involving multi-objective optimization, superellipses and 
supershapes (Eq. (2)) are regularly found to be the better solutions, also in technological applications. 

4.2. Plant Root Stress Optimization 

In [10] the polar form of superellipses was used to generate natural shapes and to perform finite element analysis 
on these shapes, including the diaphragm of bamboo culms and roots. Many roots in plants have a clear distinction 
between root cap and root body, whereby the root cap RC consists of stiffer material than the root body. The 
lower (or distal) part of the root body consists of a quiescent center QC, a primary meristem PM and more 
proximally the elongation zone where lignification occurs (Fig. 19). Notably, there is a lot of biochemical activity 
in the quiescent center but cell division, necessary for root growth, occurs on the periphery of this center, not in 
the quiescent center. 

The shape of the root body can be modeled with a superellipse (including a Flachpunkt). Modeling the root body 
as one half of a superellipse (or as a superparabola) and the root cap as an ellipse, and selecting materials with 
different stiffness for root cap and root body, is enough to account for the development of a quiescent center (Fig. 
19). The force applied at the tip of the root cap results in stress diverted away from the QC and towards the root 
body, where lignification takes place. The stresses are very low in the quiescent center. However, on the 
periphery, tension stresses occur which may provide a clue that simple force and shear provide a biomechanical 
basis for cell division. Applying a stronger force at the tip (axial force) results in a decrease of the quiescent center. 
A force left or right of the axis, for example when the root tip encounters an obstacle, results in an asymmetrical 
shape, with more tensile forces at the opposite side of the QC [18]. Once the obstacle is rounded, the gravitropism 
restores the original growth direction of the root. 

Figure 19. Left: roots of corn, with Flachpunkt-like zone visible in (b); PM is Primary Meristem, QC is Quiescent Center, 
RC is Root Cap. Right: models with root cap an ellipse and root body a superellipse; the stresses imposed onto the root 
cap (blue zone) are diverted to the root body (red zone); the central zone (green) remains almost stress-free. 
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4.3. Stress Reduction in Mechanically Stressed Objects 

A classical problem in engineering is the study of a plate with circular hole stressed under tension. Without a hole 
the average tensile stress can be easily calculated as a force over the section surface. With a hole however, local 
stresses near the hole can increase threefold. This problem can be analyzed easily and accurately using a 2D plane 
stress FEA (assuming an infinitely thin plate). We were interested in changing the shape of the hole and seeing 
what shape would yield the lowest stress increase. In the following examples, the plate sections are stressed in Y-
direction. The only value being changed in this design is the exponent 𝑛𝑛𝑛𝑛 of the superellipse, keeping the size along 
the horizontal and vertical center line of the hole equal. By increasing the exponent, more material is removed, 
thus making the plate weaker and intuitively, one could expect that even more stress will be produced (Fig. 20). 

By changing the shape of the hole, the location of maximum stress shifts outside of the horizontal center line of 
the hole and the maximum stress value reduces. Table 1 lists the maximum occurring stresses in function of the 
exponent with the minimum stress achieved at n = 3.0. 

4.4. Compactness: Dido’s Problem Revisited 

Roman poet Publius Vergilius Maro (70–19 BC) tells in his epic Aeneid the story of queen Dido, daughter of the 
Phoenician king of the 9th century BC. After the assassination of her husband by her brother she fled to a haven 
near Tunis. There she asked the local leader, Yarb, for as much land as could be enclosed by the hide of a bull. 
Since the deal seemed modest, he agreed. Dido cut the hide into narrow strips, tied them together, and encircled 
a large tract of land which became the city of Carthage. Dido intuitively solved what is known as the isoperimetric 
problem: find among all curves of given length the one curve which encloses maximal area. Unfortunately, most 
optimization problems feature additional boundary conditions. Dido’s solution was indeed correct, but what if 
the land she was offered had limitations to shape? Or contained a lot of useless desert? Or a coastline? 

At Genicap we worked on compactness, which is a shape parameter that is defined as the ratio between a shape’s 
area over the circumference. For example, a square with a side of 2 meters has an area of 4 square meters, but a 
circumference of 8 meters, so its compactness equals 0.5 meters (a length unit). A circle with a radius of 1 meter 
(= diameter of 2 meters) has an area of 𝜋𝜋𝜋𝜋 square meters and a circumference of 2𝜋𝜋𝜋𝜋 meters, hence its compactness 
is also 0.5 meters. So the circle and the square that circumscribes this very circle have exactly the same 
compactness. Compactness is linear to size, hence the resulting unit that remains after the division of area with 
circumference. As the square has a large area, it has a compactness “advantage” over the circle, flattening the 
negative effect on compactness of its sharp corners. 

       
Figure 20. Hole with n = 2 (left) – circular = reference – and n=3.2 (right). 

N Max. Stress [MPa] Relative Difference 

2.0 13.7899 Reference 

2.8 11.9629 -13.24% 

3.0 11.9399 -13.42% 

3.2 11.9739 -13.17% 

Table 1. Stress in plates with holes. 
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But could there be a shape available that has an even better compactness than 0.5 meters that is circumscribed 
by the same square? Intuitively, the expected answer would be positive. But what shape would it be? Defining 
compactness of a supercircle with exponent n as a ratio: 

Compactness(n)  =  
Area(n)

Circumference (n) 

It results that for a given area of the circumscribed square, a supercircle with 𝑛𝑛𝑛𝑛 = 4.394 has the highest 
compactness (Fig. 21). 

If a supercircle with 𝑛𝑛𝑛𝑛 ≅ 4.394 has the highest possible compactness for a given circumscribed square, which is 
in fact a boundary condition, does this mean that for any problem this superellipse is the optimal solution? No, it 
is not as optimal solutions depend on the constraints. 

Another, more worldly, problem is the design of a yoghurt pot. In early times, those were cylindrical since these 
shapes were assumed to be easy to manufacture (by stamping) with the least cost as the shape was thought to be 
the most compact. Later on, by experience, the pots got more supercircular-shaped to minimize the space 
between pots. In this problem, space equals money (for storage, transportation, etc.). 

A yoghurt pot has a more complex boundary condition as it has to be fastened to other pots at the edge with a 
given distance between pots, in this case 10mm. By means of adequate modeling and using our numeric 
calculations, we redesigned the pot and the most optimal design had an exponent of 3.3 (Fig. 22), less than 
compactness would suggest. By optimizing the shape we were able to reduce the material amount by almost 3% 
without any loss of functionality. Since these items are produced by millions a day, three percent is a considerable 
saving. Such optimization can be applied to any optimization in placement, e.g. storage of containers. 

Figure 21. Compactness is calculated in function of the exponent 𝑛𝑛𝑛𝑛, starting at 0.5 up to 20. A supremum is at 𝑛𝑛𝑛𝑛 ≅ 4.394. 
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Figure 22. Circular (left) vs. supercircular (right) design of a yoghurt pot. 

4.5. Engines and Gears 

increased for the same size of engine, increasing power output and torque. In today’s engines, injectors spray fuel 

– –

Figure 23. Placement of valves in a superelliptic engine cylinder. A superelliptic cylinder can house much larger valves 
(green) while maintaining the same distance from the side, improving airflow and combustion properties. 
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Figure 24. Changing the tooth root shape can reduce the occurring bending stresses in a gear tooth root. 

Also, non-circular gears have been constructed using Eq. (4) [41] and in the design of magnetic gears [42]. Other 
potential applications could be in roller bearing technology by applying superelliptic microgeometry on the roller 
elements. The techniques today are already performing well, creating bearings that last a lot longer than in earlier 
days. But still the question remains whether other profiles could do even better. The application of roller elements 
shaped as superellipses, the so-called Supereggs by Piet Hein, might produce even better load distributions as the 
transition from flat surface in the middle to a higher radius on the side of the roller occurs in a smooth and 
continuous manner. Depending on the occurrence of misalignments, engineers assess whether it is better to focus 
on one load condition, or to make the roller more robust for misalignments. 

5. FUTURE DEVELOPMENTS 

Current manufacturing capabilities also allow for more complex mathematical shapes, even with manufacturing 
technology for nanophotonics and nanotechnology. The above examples show that using superelliptical or 
superformular shapes are in many ways optimal solutions to complex problems. The author believes that many 
more optimal designs are possible, once designers and engineers will start to use these insights. There are already 
many examples in electromagnetics, antenna technology, mechanics, laser optimization, gear technology etc. 
[3,43,44,45,46]. For antenna technology, the multi-objective optimization method is described by Mescia et al., in 
this volume, and in [47] the generalized superformula [20] is used to design lens antennas. This is not restricted 
to single shapes, but also to arrays of shapes, in packaging, antenna arrays and metamaterials [46]. Well 
established technologies such as gear design and dredge cutter design can greatly benefit from supershape 
optimization. Such optimization methods also include material minimization via topology optimization [48,49]. 

One of the most promising applications could be in lasers [45]. In a laser, the laser medium (a gas or a solid) is 
excited by light or electric power. When the excited electrons fall back to their lower orbitals, they release 
radiation at a specific frequency. In a laser, a standing wave of this radiation is produced between two mirrors. 
On one side the mirror is fully reflective, on the other side only partially. As a result, a radiation beam is produced. 
Both mirrors mostly have circular or flat shapes, thus producing a Gaussian intensity profile.  

An idea could be to make the mirrors slightly superelliptical, e.g. with 𝑛𝑛𝑛𝑛 =  2.3, and to analyze the intensity profile 
of the generated beam. By using a supercircular mirror (Fig. 25) it can be expected that the intensity profile of the 
beam will become Supergaussian, which has important advantages in laser applications. Also, some expect laser 
efficiency could be massively increased. The use of stacked lenses mimicking superellipses in horn antennas may 
serve as inspiration [50]. 
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Figure 25. Comparison between a regular laser resonator (top) and a superelliptical resonator (bottom). 
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