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1. INTRODUCTION 

After leaving the aquatic environment, terrestrial vertebrates had to evolve body structures that maintained their 
body shape in conditions with much less ambient pressure. The long bones carrying the weight of the whole body 
must be adequately solid and rigid. At the same time, they should show only a minimum bend or torsion when 
forces usually acting on them are applied. 

For the sake of simplicity, long bones are treated as hollow tubes usually filled with bone marrow [1,2,3]. The 
long bone’s properties depend mainly on the structure and distribution of the material they consist of [2]. The 
relative importance of the outer (cortex) and inner (marrow) part may differ on a large scale. Some bones possess 
a thin cortex and a large marrow cavity, others a thick cortex with a small amount of marrow. The bones of the 
limbs must withstand loads that act on the bone cross-sections. The cross-sectional shape of the bone as well as 
the thickness of the wall depend on the distance from the end of the bone and the orientation of the acting forces. 

Galileo Galilei was the first who noticed that hollow tubes have the advantage of resisting bending forces 
compared to a full profile filled with the same material [4]. This advantage can be expressed by the ratio of the 
second moment of the area of the cross-section (I) to the area of the cross-section (A), which is in the case of the 
fully filled tube: 

𝐼𝐼𝐼𝐼
𝐴𝐴𝐴𝐴 =

𝑅𝑅𝑅𝑅2

4  

and in the case of a hollow tube: 

𝐼𝐼𝐼𝐼
𝐴𝐴𝐴𝐴 =

2𝑅𝑅𝑅𝑅2 − 2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅2

4  

The bones of vertebrates differ in many ways. When we consider the internal structure 
of bones, some have slender marrow cavities and relatively thick walls, while others are 
built oppositely. Previous studies looked for the biomechanical optimum of the long 
bones using a circular model of the cross-section at the mid-length of the bone. This study 
proposes new models based on the ellipse, which more closely approximate the actual 
shape of the cross-sections. The derived models are compared with a small sample of the 
cross-sections of a wild boar’s limb bones (humerus, femur). Finally, the shape of the 
cross-sections involving the ellipses, superellipses and superpolygons is discussed. 

Article History 
Received 9 January 2023 
Revised 26 July 2023 
Accepted 29 September 2023 
 
Keywords 
Bones 
Wild boar 
Yield (fatigue) strength 
Ultimate bending strength 
Ellipse 
Superellipse 

  

  

 

 
*Corresponding author. Email: spichal@clatrutnov.cz 
© 2023 The Author. Published by Athena International Publishing B.V. 
This is an open access article distributed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/). 

 
 

   

 

 

Athena Transactions in Mathematical and Physical Sciences, Volume 1 
Proceedings of the 1st International Symposium on Square Bamboos and the 

Geometree (ISSBG 2022), pp. 143–152 
DOI: https://doi.org/10.55060/s.atmps.231115.012, ISSN (Online): 2949-9429 

Proceedings home: https://www.athena-publishing.com/series/atmps/issbg-22 
 

 

PROCEEDINGS ARTICLE 

The Shape of the Cross-Section and the Strength of the 
Long Bones 
Luděk Spíchal1,* 
1 Czech Forestry Academy Trutnov, Trutnov, Czech Republic 

ABSTRACT                                                                                                                                ARTICLE DATA 

1. INTRODUCTION 

After leaving the aquatic environment, terrestrial vertebrates had to evolve body structures that maintained their 
body shape in conditions with much less ambient pressure. The long bones carrying the weight of the whole body 
must be adequately solid and rigid. At the same time, they should show only a minimum bend or torsion when 
forces usually acting on them are applied. 

For the sake of simplicity, long bones are treated as hollow tubes usually filled with bone marrow [1,2,3]. The 
long bone’s properties depend mainly on the structure and distribution of the material they consist of [2]. The 
relative importance of the outer (cortex) and inner (marrow) part may differ on a large scale. Some bones possess 
a thin cortex and a large marrow cavity, others a thick cortex with a small amount of marrow. The bones of the 
limbs must withstand loads that act on the bone cross-sections. The cross-sectional shape of the bone as well as 
the thickness of the wall depend on the distance from the end of the bone and the orientation of the acting forces. 

Galileo Galilei was the first who noticed that hollow tubes have the advantage of resisting bending forces 
compared to a full profile filled with the same material [4]. This advantage can be expressed by the ratio of the 
second moment of the area of the cross-section (I) to the area of the cross-section (A), which is in the case of the 
fully filled tube: 

𝐼𝐼𝐼𝐼
𝐴𝐴𝐴𝐴 =

𝑅𝑅𝑅𝑅2

4  

and in the case of a hollow tube: 

𝐼𝐼𝐼𝐼
𝐴𝐴𝐴𝐴 =

2𝑅𝑅𝑅𝑅2 − 2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅2

4  

The bones of vertebrates differ in many ways. When we consider the internal structure 
of bones, some have slender marrow cavities and relatively thick walls, while others are 
built oppositely. Previous studies looked for the biomechanical optimum of the long 
bones using a circular model of the cross-section at the mid-length of the bone. This study 
proposes new models based on the ellipse, which more closely approximate the actual 
shape of the cross-sections. The derived models are compared with a small sample of the 
cross-sections of a wild boar’s limb bones (humerus, femur). Finally, the shape of the 
cross-sections involving the ellipses, superellipses and superpolygons is discussed. 

Article History 
Received 9 January 2023 
Revised 26 July 2023 
Accepted 29 September 2023 
 
Keywords 
Bones 
Wild boar 
Yield (fatigue) strength 
Ultimate bending strength 
Ellipse 
Superellipse 

  

  



144 
Athena Transactions in Mathematical and Physical Sciences, Volume 1 

Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) 
 

 

where 𝑅𝑅𝑅𝑅 is the thickness of the wall, 𝑅𝑅𝑅𝑅 is the external radius, and 𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅 is the internal radius of the bone. 
Theoretically, the thinner wall creates a better ratio between bending and torsional stability and tube weight. The 
emphasis on the word ”theoretically” is crucial. When bending stress is applied, the shape of the cross-section 
may change. Exceeding a critical stress value causes instability or tube collapse. The wall thickness of the tube 
must be sufficient to prevent a failure from local buckling, which can spread catastrophically along the tube. The 
marrow-filled bones are on the one hand close to the hollow tubes by mechanical properties, while on the other 
hand, they have less weight than the full-filled profile at the same length. An individual with a lower weight of the 
skeleton saves energy on movement, which can be seen as an evolutionary advantage [1,2,5,6,7,8]. 

Limb bones are liable to fail by fatigue, due to stresses imposed repeatedly or can be broken if the maximum of 
bone strength was exceeded [9]. The bone cross-sectional arrangement, therefore, corresponds to the mechanical 
load regimes to which the bones are usually subjected [10]. 

Currey was concerned with the question of how thin the thin-walled bones should be to withstand local buckling. 
Calculations made by him took only the mass of cortical bone into account. The bones seemed to be too thick-
walled, although the investigated skeletons were roughly minimum mass structures [11]. Currey & Alexander 
took into consideration also the mass of marrow and produced calculations for the optimum hollowness of long 
bones. Theoretical calculations were compared with measurements on more than 240 long bones from 70 species 
of animals. They discussed the thickness of the bone’s wall and concluded that a 10 % saving in the mass of the 
bones, compared with a solid bone, would produce a 5 % saving in the power required for fast galloping. They 
consider this saving as essential in terms of natural selection [12]. Évinger presented that human femora are 
optimized to withstand bending, fracture, or yield and fatigue strengths [6]. 

The cross-sectional dimensions of the bones determine their ability to withstand the stresses created by forces 
acting on the bones. The cross-sectional shape may indicate the usual type of loading. Cross-sections that have a 
more circular shape are suitable for multidirectional load modes, while the elliptical shape refers to unilateral 
loading [13]. 

Available studies in the field [5,6,14,15,16] evaluate the strength of bones according to the article [12] by Currey 
& Alexander, who focused on the bending of the bones and calculated the optimum thickness of the bone’s walls. 
They considered the long bones as circular ones in the cross-section. 

The subject of this article is the assessment of the construction of the long bone’s cross-sections in terms of 
bending. The aim is also to consider the real (mostly elliptical) shape of the cross-sections of the long bones. The 
revised mathematical models are going to be compared with experimental data found in long bones of wild boars. 

2. ELLIPTICAL CROSS-SECTIONAL MODEL OF THE LONG BONES 

Let: 

𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 =
𝑎𝑎𝑎𝑎 − 𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎 ,     𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 =

𝑏𝑏𝑏𝑏 − 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏  

be the ratios of the internal to external diameters along both principal axes of the elliptical cross-section of the 
long bones. The quantities of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏  may vary from 0, in which case the bone will be without an internal cavity, to 
very nearly 1, in which case it will be very thin-walled (Fig. 1, Fig. 2). The values of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏  allow searching for the 
optimal bone wall thickness [12]. 

Currey & Alexander determined several requirements for the optimum value of 𝐾𝐾𝐾𝐾 (circular cross-section, 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 =
 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏). The bone must be strong enough [12]: 

• not to yield, under the greatest bending moments likely to act on it; 

• not to fail by fatigue, under the bending moments expected to act repeatedly on it; 

• not to fracture under the greatest bending moments likely to act on it. 
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Figure 1. Conventions for 𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏,𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 ,𝑘𝑘𝑘𝑘, 𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 , 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏  used in text. 

Figure 2. The cross-section at mid-length of the humerus (left) and femur (right) of a wild boar (male, weight approx. 70 
kg, age approx. 3 years). 

2.1. Yield (Fatigue) Strength in Bending 

The stress produced by some bending moment 𝑀𝑀𝑀𝑀 must not exceed some critical value 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Considering the 
second moment of the area relative to the minor semi-axis of 𝑏𝑏𝑏𝑏 �𝐼𝐼𝐼𝐼𝑏𝑏𝑏𝑏 = 𝜋𝜋𝜋𝜋

4
𝑎𝑎𝑎𝑎3𝑏𝑏𝑏𝑏�, we can write (for more details see 

equations 1 and 2 in [12]): 

𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≥
4𝑘𝑘𝑘𝑘𝑀𝑀𝑀𝑀

𝜋𝜋𝜋𝜋𝑎𝑎𝑎𝑎3(1 −𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎3𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏) 

where 𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎/𝑏𝑏𝑏𝑏. 1 The radius of the major semi-axis of a, the lightest possible bone, will therefore be given by: 

𝑎𝑎𝑎𝑎 ≥ 𝐶𝐶𝐶𝐶1�
𝑘𝑘𝑘𝑘

1− 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎3𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏

3
 

where 𝐶𝐶𝐶𝐶1 = � 4𝑀𝑀𝑀𝑀
𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

3  is a constant.2 

If the density of bone relative to the unit of length is equal to 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 (and in the case of marrow 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), then assuming 
the smallest possible radius of the major semi-axis of 𝑎𝑎𝑎𝑎, the mass of the bone segment per unit length is: 

 
1 We assume that the bone is loaded in a pure bending, so it is exposed to the same bending moment all along the bone [2]. 
2 All applied equations assume an ideal geometric form, but bones are usually not perfectly tubular structures. On the other hand, the 

calculations allow us to investigate the mechanical behavior of bones [3]. 
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𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 + 𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝐶𝐶𝐶𝐶12(1−𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)
�𝑘𝑘𝑘𝑘(1 −𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎3𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)23

+
𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐶𝐶𝐶𝐶12𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏
�𝑘𝑘𝑘𝑘(1 − 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎3𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)23

  (1) 

The mass of the bone changes as the values of the quantities of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏  change. The mass of the bone tends to zero 
when the values of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏  tend towards 1. In other words, the same strength of the bone could be achieved by an 
increase in diameter accompanied by lowering the thickness of the wall [12]. 

The optimal values of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 can be found (if they exist) as a minimum of a multivariate function given by Eq. (1) 
via evaluating the partial derivatives (∂𝑚𝑚𝑚𝑚/∂𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎, ∂𝑚𝑚𝑚𝑚/∂𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏) and solving a system of equations: 

∂𝑚𝑚𝑚𝑚
∂𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎

= 0,         
∂𝑚𝑚𝑚𝑚
∂𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏

= 0 

where the constraints 0 < 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 < 1, 0 < 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 < 1 must be satisfied. The optimal values of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏  depend on the ratio 
of marrow density to solid bone density, the quantity of 𝑘𝑘𝑘𝑘 affects the mass of bone per unit length. 

The procedure mentioned above will also be used when looking for the optimal values of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏  in the next section. 

2.2. Ultimate Bending Strength 

When evaluating the ultimate bending strength, the first moment of the area of the half cross-section about the 
diameter would need a particular value to withstand a particular bending moment. With respect to the first 
moment of area of the semi-ellipse about the minor semi-axis of 𝑏𝑏𝑏𝑏 �𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦 = 2

3𝑘𝑘𝑘𝑘
𝑎𝑎𝑎𝑎3�, the radius of the major semi-axis 

of 𝑎𝑎𝑎𝑎, the lightest possible bone will therefore be given by (for more details see equation 6 in [12]): 

𝑎𝑎𝑎𝑎 ≥ 𝐶𝐶𝐶𝐶2�
𝑘𝑘𝑘𝑘

1− 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎2𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏

3
 

and the mass of the bone segment per unit length is: 

𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 + 𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝐶𝐶𝐶𝐶22(1−𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)
�𝑘𝑘𝑘𝑘(1 −𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎2𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)23

+
𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐶𝐶𝐶𝐶22𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏
�𝑘𝑘𝑘𝑘(1 − 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎2𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)23

    (2) 

where 𝐶𝐶𝐶𝐶2 = �3
2
𝑄𝑄𝑄𝑄𝑦𝑦𝑦𝑦

3  is a constant. 

3. PRELIMINARY VERIFICATION OF BOTH MODELS ON A SAMPLE OF WILD 
BOAR’S LIMB BONES 

This article proposes a new elliptical model for calculating the optimum thickness of the limb bone’s walls. This 
section aims to make a comparison of the assembled models with a small sample of wild boar’s limb bones. 

The humeri and femora of 5 adult wild boars were gathered. The length of each bone was measured, and 2 
diameters, mutually at right angles, halfway along its length. The bone was sectioned at mid-length, and the 
internal diameters corresponding to the externally measured diameters were measured using the caliper [12]. 
The choice of bone center results from the relatively regular shape, while the bending stress in the center of the 
bone is probably the largest [10]. Each bone produced two values, both 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏. In three cases, a specimen of 
about 5 cm in length was detached to determine the average density of a solid bone and of marrow. 

Wild boars’ body mass was in the range 60−75 kg.3 The length of the humeri varied in the range 17−23 cm, and 
the cross-sections at mid-length were elliptical with the ratio of 𝑎𝑎𝑎𝑎/𝑏𝑏𝑏𝑏 in the range 1.34−1.47:1. The length of the 
femora varied in the range 18−23 cm, and the cross-sections at mid-length were elliptical with the ratio of 𝑎𝑎𝑎𝑎/𝑏𝑏𝑏𝑏 in 

 
3 The weights determined by the hunters and included in the results mean the weight of the animal after removing the internal organs. It 

is a common practice of hunters in the Czech Republic. 
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the range 1.21−1.38:1 (Table 1). When determining the 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 values, gender was not considered. The values 
of the density of marrow and solid bone are given in Table 2. 

 

 𝒂𝒂𝒂𝒂 𝒃𝒃𝒃𝒃 𝒕𝒕𝒕𝒕𝒂𝒂𝒂𝒂 𝒕𝒕𝒕𝒕𝒃𝒃𝒃𝒃 𝑲𝑲𝑲𝑲𝒂𝒂𝒂𝒂 𝑲𝑲𝑲𝑲𝒃𝒃𝒃𝒃 

Humeri 13.0 – 15.3 9.6 – 11.6 4.6 – 5.4 4.0 – 5.1 0.62 – 0.66 0.54 – 0.61 

Femora 11.5 – 13.0 9.3 – 11.2 4.4 – 5.4 3.2 – 4.9 0.58 – 0.66 0.54 – 0.70 

Table 1. Humeri and femora of wild boars; the conventions for 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 , 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏 ,𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏  are in Fig. 1 (lengths given in mm). 

 Solid Bone Marrow 𝝆𝝆𝝆𝝆𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃/𝝆𝝆𝝆𝝆𝒃𝒃𝒃𝒃 

Wild Boar 2070 860 0.42 

Table 2. The average density (kg/m3) of a solid bone (𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏) and marrow (𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) of wild boars. 

3.1. Yield (Fatigue) Strength in Bending 

Eq. (1) with respect to the ratio 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 (Table 2) can be modified to the form: 

𝑚𝑚𝑚𝑚 =
𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝐶𝐶𝐶𝐶12(1− 0.58𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)

�𝑘𝑘𝑘𝑘(1 −𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎3𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)23
   (3) 

The evaluation of the partial derivatives (𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚/𝜕𝜕𝜕𝜕𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 , 𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚/𝜕𝜕𝜕𝜕𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏) of Eq. (3) gives the system of equations: 

0.29𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎3𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏2 − 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎2𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 + 0.29𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 = 0 

0.58𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎4𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 + 2𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎3 − 1.74𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = 0 

where [0; 0], �− 1
5
�29

2
;−250

29
� 2
29
�, �1

5
�29

2
; 250
29
� 2
29
�, �− √87

10
; 0�, �√87

10
; 0� are solutions to the system of equations. One 

can easily recognize that no one solution satisfies the constraints  0 < 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 < 1, 0 < 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 < 1, thus the function of 
the mass 𝑚𝑚𝑚𝑚 does not have a minimum in a given range. 

So far, the values of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎, 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 have been treated as independent quantities. This assumption does not seem to be 
justified, because bones are complex structures, and their mechanical properties should answer their inside 
design. From this point of view, it might be useful to think about 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎, 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 as dependent quantities and introduce a 
new variable: 

𝑐𝑐𝑐𝑐 =
𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏
𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎

  

where 𝑐𝑐𝑐𝑐 > 0. Substituting 𝑐𝑐𝑐𝑐𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 in Eq. (3) for 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏, along with the evaluation of the partial derivative (𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚/𝜕𝜕𝜕𝜕𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎) and 
another simplification, we get the equation: 

1.16𝑐𝑐𝑐𝑐2𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎5 − 8𝑐𝑐𝑐𝑐𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎3 + 3.48𝑐𝑐𝑐𝑐𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = 0 

where (𝑐𝑐𝑐𝑐 ≠ 0): 

𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = 0,     𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = ±�
100 −√10000 − 2523𝑐𝑐𝑐𝑐

29𝑐𝑐𝑐𝑐 ,     𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = ±�
100 + √10000 − 2523𝑐𝑐𝑐𝑐

29𝑐𝑐𝑐𝑐  

The formulas for 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎, 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 are of the form (Fig. 3): 
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𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = �100 −√10000 − 2523𝑐𝑐𝑐𝑐
29𝑐𝑐𝑐𝑐 ,      𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 = 𝑐𝑐𝑐𝑐�

100 −√10000 − 2523𝑐𝑐𝑐𝑐
29𝑐𝑐𝑐𝑐     (4) 

where the constraints 0 < 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 < 1, 0 < 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 < 1 are satisfied for the choice 𝑐𝑐𝑐𝑐 ∈ (0; 1.43771). 

In the case of the circular shape of the cross-section, where 𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏, the evaluation of the derivative of Eq. 
(3) gives the single value of 𝐾𝐾𝐾𝐾 = 0.68. 

Figure 3. Comparison between predicted and observed data in the case of yield (fatigue) strength. The predicted data 
for 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 (in blue) and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 (in red) according to Eq. (4) are marked with dashed lines, and the observed data for 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 (in blue) 
and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 (in red) are marked with circles (humeri) and rhombuses (femora). The regression lines for observed values of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 
and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 are marked with solid lines. 

Figure 4. Comparison between predicted and observed data in the case of ultimate bending strength. The predicted data 
for 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 (in blue) and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 (in red) according to Eq. (4) are marked with dashed lines, and the observed data for 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 (in blue) 
and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 (in red) are marked with circles (humeri) and rhombuses (femora). The regression lines for observed values of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 
and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 are marked with solid lines. 
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3.2. Ultimate Bending Strength 

Eq. (2) with respect to the ratio 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏 (Table 2) can be modified to the form: 

𝑚𝑚𝑚𝑚 =
𝜋𝜋𝜋𝜋𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏𝐶𝐶𝐶𝐶22(1− 0.58𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)

�𝑘𝑘𝑘𝑘(1 −𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎2𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏)23
   (5) 

Using the same procedure as in the previous section leads to the equation: 

1.16𝑐𝑐𝑐𝑐𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 − 2𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎2 = 0  

where: 

𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = 0,     𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = 0.58 

Thus the formulas for 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎, 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 are of the form (Fig. 4): 

𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = 0.58,     𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 = 0.58𝑐𝑐𝑐𝑐   (6) 

where the constraints  0 < 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 < 1, 0 < 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 < 1 are satisfied for the choice 𝑐𝑐𝑐𝑐 ∈ (0; 1.72414). The circular shape of 
the cross-section, where 𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 = 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏, gives the single value of 𝐾𝐾𝐾𝐾 = 0.58. 

4. DISCUSSION 

In the case of yield (fatigue) strength, the function of the mass of the bone does not have a single optimal value (a 
minimum) of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 and 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏. Therefore, the quantity of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 was determined as a function of the ratio of 𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏/𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎. As 
the value of the ratio 𝑐𝑐𝑐𝑐 increases, the mathematical model predicts a slow increase in the value of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 and a sharp 
increase in the value of 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏 (Fig. 3). 

The mathematical model describing the ultimate bending strength does not show any dependence on the ratio of 
𝑐𝑐𝑐𝑐 in the value of 𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 (Fig. 4) and predicts a sharp increase in the value of 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏. 

When comparing the observed data with the predicted ones, one can see that the elliptical model could be a 
suitable alternative to the circular model, especially after verifying a larger sample of the cross-sections. Such 
verifying might also answer the question of whether the limb bones are built preferably for yield (fatigue) 
strength or ultimate bending strength. 

The elliptical models also predict the substantial saving in the bone mass of wild boars (Fig. 5). The potential 
saving in a mass of bones is expressed as a function of 𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏/𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎, where: 

𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 = 𝜋𝜋𝜋𝜋𝐶𝐶𝐶𝐶12
�0.58√10000 − 2523𝑐𝑐𝑐𝑐 − 29�√29𝑐𝑐𝑐𝑐23

�𝑘𝑘𝑘𝑘�3364𝑐𝑐𝑐𝑐 + 200√10000 − 2523𝑐𝑐𝑐𝑐 − 20000�
23
   (7) 

is a function determining the saving of a mass of bones in the case of yield (fatigue) strength, and: 

𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 = 𝜋𝜋𝜋𝜋𝐶𝐶𝐶𝐶22�
1− 0.583𝑐𝑐𝑐𝑐

𝑘𝑘𝑘𝑘
3

   (8) 

is a function determining the saving of a mass of bones in the case of ultimate bending strength. Each curve (𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘) 
maps such a saving for a given quotient of 𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎/𝑏𝑏𝑏𝑏, i. e. an eccentricity of the cross-section. One can see that in 
both models of savings, an increment in the value of c predicts a decline in the value of 𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘, whereby in the case 
of yield strength saving is more significant. 

This saving of material occurring in less stressed parts could be considered as more important than the optimum 
wall thickness, which does not differ significantly from the typical values for circular cross-sections. 
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Figure 5. Left: the potential saving of the bone mass (𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘) for different values of 𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎/𝑏𝑏𝑏𝑏 as a function of 𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏/𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 
for yield (fatigue) strength according to Eq. (7). Right: the potential saving of the bone mass (𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘) for different values of 
𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎/𝑏𝑏𝑏𝑏 as a function of 𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏/𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎 for ultimate bending strength according to Eq. (8). 

5. CONCLUSION 

Limb bones (not only) of wild boars are predominantly elliptical in cross-section at mid-length, with the major 
axis usually oriented in the direction of movement of the animal. This arrangement can increase the bending 
strength in the sagittal plane by reducing the bending stress [17]. The femoral cross-sections are generally less 
eccentric when compared to the humeral. Amson & Kolb in [18] report that large-sized deer have a significantly 
more elliptical (less circular) femoral cross-section at mid-length than smaller bodied cervids. 
Kilbourne & Hoffman [7] state that in quadrupedal mammals, the forelimbs typically support 60% of the total 
body weight. Higher loading of the forelegs may explain both the greater eccentricity of the cross-sections of the 
humeri and the higher proportion of cortical bone in the cross-sectional area. The construction of humeri on the 
cross-sections indicates the predominant unilateral stress acting on these bones and, consequently, the forelegs. 
Both the smaller eccentricity of the humeri and the decreasing proportion of bone to the cross-sectional area 
(with the growing value of the radius, typically for elderly individuals) suggest that the humeri are usually loaded 
in more directions. 
The observed values of 𝐾𝐾𝐾𝐾 (𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎,𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏) varied in the range 0.54−0.70. Currey & Alexander [12] report a range of 
quantity of 𝐾𝐾𝐾𝐾 = 0.4−0.7, which they consider being optimal. Bernáth et al. [5] assessed the thickness of the fox 
femora (Vulpes vulpes L.). The observed values of 𝐾𝐾𝐾𝐾 were in the range 0.59−0.74, with an average value of 𝐾𝐾𝐾𝐾 =
0.68. De Margerie et al. [14] examined the values of 𝐾𝐾𝐾𝐾 for the long bones of wings and legs of 22 bird species and 
found the values of 𝐾𝐾𝐾𝐾 in the range 0.41−0.85. Suhai et al. [16] examined the values of 𝐾𝐾𝐾𝐾 for humeri, femora, and 
tibiotarsi in crows (Corvus cornix L.) and magpies (Pica pica L.). An interesting conclusion was finding almost the 
same values of 𝐾𝐾𝐾𝐾 = 0.77−0.79 for both gas- and marrow-filled bones. Demes et al. [15] investigated the long bones 
(humerus, femur) of primates from the family Indriidae. They found that the 𝐾𝐾𝐾𝐾-values vary in a broad range of 
values with lower ones in the case of humeri. More massive femora are associated with a different way of primate 
movement when the hind legs are more heavily loaded. We can conclude that the observed values of 𝐾𝐾𝐾𝐾 
corresponded to the previous surveys. 
Currey & Alexander [12] report using the circular model a saving in mass of bone in the value of about 13 %. The 
elliptic model does not predict a single value of savings but considers both the ratio of major axis lengths and the 
ratio of 𝐾𝐾𝐾𝐾. From this point of view, the model predicts an increasing value of bone mass savings for an increasing 
value of 𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐾𝐾𝑏𝑏𝑏𝑏/𝐾𝐾𝐾𝐾𝑎𝑎𝑎𝑎. 
Both yield (fatigue) and ultimate bending strength mentioned and calculated in the article were based on the 
usage of the ellipse. One can easily find that the real shape of the cross-sections (humeri, femora) differs more or 
less from the ellipse. Spichal [19] showed that the models based on the ellipse and the single superellipse do not 
fit the shape of the cross-section of the long bones with sufficient precision. The model of the compound 
superellipse calculating the shape for four quarters of the cross-section was built. The static methods used 
confirmed the performance of the compound superellipse model. 
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Very similar observations were also made in the case of tree stem cross-sections, and the superellipses were 
reported as suitable models for calculating the cross-sectional areas [20]. Finally, we can mention the observation 
made by Mattheck et al. [21], which indicates some similarity between the failure resistance of animal limb bones, 
and trees with an internal cavity. Studies that have been done on a large sample of trees show that the possibility 
of failure of the tree suddenly increases at a ratio of 70 % hollowness. 
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