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1. INTRODUCTION 

Anyone who has cut meat or sawed wood is aware that it is easier to cut or saw in some directions than in others. 
If we consider meat or wood as an idealized horizontal three-dimensional slab, then we observe that the amount 
of energy required to create a unit area of surface, depends entirely on the direction of the piece of surface. 

The same phenomena is encountered when cutting through any crystalline solid, or more generally, through any 
material in an ordered phase. Since intermolecular bonds are stronger in certain directions than in others, more 
work must be done to cut along these directions and thus to create a unit area of surface along them. To account 
for this Josiah Gibbs introduced a notion of anisotropic surface energy by defining a density 𝛾𝛾𝛾𝛾(𝜈𝜈𝜈𝜈) which is the unit 
energy per unit area of a surface element having unit normal 𝜈𝜈𝜈𝜈. The total energy of the surface is then given by 
summing this over the surface: 

ℱ = � 𝛾𝛾𝛾𝛾(𝜈𝜈𝜈𝜈)
Σ

𝑑𝑑𝑑𝑑Σ                                                                                                                                                     (1) 

The deviation of 𝛾𝛾𝛾𝛾 from being a constant is a measure of the anisotropy of the surface.  

According to the principles of thermodynamics, the tendency of a surface to minimize its surface energy is the 
most important factor in determining the surface geometry. Of course, this minimization must take into account 
any constraints which are imposed, for example boundary conditions, volume constraints. This tendency of the 
surface to minimize energy yields a differential equation, known as the Euler-Lagrange equation, which gives a 
necessary condition which any equilibrium surface must satisfy. The first one to apply the calculus of variations 
in relation to anisotropic surface energy was Pierre Curie [1]. 

At small scales, the shape of biological organisms is driven by their surface energy and not their bulk energy. In 
his epic work “On Growth and Form” [2], D'Arcy Thompson makes the case that biological organisms are, first and 

In this article we discuss the construction of equilibrium surfaces with symmetry for 
anisotropic energy functionals. 
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foremost, physical entities and therefore their morphology is, at least, partially driven by the laws of physics. He 
also makes the claim that the anisotropic nature of the constituent materials of these organisms is responsible 
for the deviation of their shapes from being spherical in shape. 

Although he does not explicitly use an energy of the form in Eq. (1), he employs the anisotropic Young-Laplace 
equation: 

𝑇𝑇𝑇𝑇
𝑅𝑅𝑅𝑅 + 

𝑇𝑇𝑇𝑇′
𝑅𝑅𝑅𝑅′ =  constant                                                                                                                                              (2) 

to characterize their equilibrium shapes in the absence of external forces. Eq. (1) is exactly the so-called Euler-
Lagrange equation which characterizes the equilibrium states of Eq. (2) with a volume constraint. Here 𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅’ are 
the radii of curvature of the surface of the organism, 𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇’ are orthogonally directed stresses. (This expression may 
not be adequate to describe the general situation since it presupposes that the direction of the stresses in the 
material coincide with the principal directions of the surface.) 

Remarkably, the type of energy defined in Eq. (1) possesses a canonical equilibrium known as the Wulff shape. 
We can consider the density γ as a function defined on the unit two-dimensional sphere S2 in three-dimensional 
space. As each point ν ∈ S2, we consider the half-space {X ∈ R3 | X · ν ≤ γ(ν)}. The intersection of all such half-spaces 
defines a convex body whose boundary W is called the Wulff shape, i.e.: 

𝑊𝑊𝑊𝑊 = 𝜕𝜕𝜕𝜕 � {𝑋𝑋𝑋𝑋 ∙ 𝜈𝜈𝜈𝜈 ≤ 𝛾𝛾𝛾𝛾(𝜈𝜈𝜈𝜈)}
𝑣𝑣𝑣𝑣∈𝑆𝑆𝑆𝑆2

                                                                                                                                  (3) 

A series of results, collectively known collectively as Wulff’s Theorem, state that the surface W is the unique 
absolute minimizer of the free energy (Eq. (3)) among all closed surfaces enclosing the same volume as W [3,4] 
(for other values of the volume, the minimizer is the appropriate rescaling of W). Some biographical information 
on Georg Wulff can be found in [5]. In the special case γ ≡ 1, Wulff’s Theorem is just the classical three-dimensional 
isoperimetric inequality which states that the round sphere is the unique minimizer of surface area for a given 
volume. The Ukrainian crystallographer Wulff first stated this result in the case where W and all competing 
surfaces are ‘‘crystals’’, i.e. surfaces that are piecewise linear. Over the years, Wulff’s result has been generalized 
to the point where it is now known to hold (in any dimension) when W is an arbitrary convex surface and the 
comparison surfaces need only be surfaces in some measure theoretic sense. 

Besides the result that the Wulff shape W is the unique minimizer, there are results characterizing W as the unique 
stable closed equilibrium surface, the unique embedded closed equilibrium and the unique genus zero, closed 
equilibrium for the surface energy (Eq. (3)). 

2. DELAUNAY SURFACES 

The axially symmetric constant mean curvature surfaces were found by Charles Delaunay [6]. Delaunay found 
that if a conic section is rolled without slipping along a line, the trace of a focus will yield the generating curve of 
a CMC surface and that all axially symmetric CMC surfaces arise in this way. The correspondence is as follows: 
circle ←→ cylinder, ellipse ←→ unduloid, hyperbola ←→ nodoid, parabola ←→ catenoid. The sphere can be 
obtained as a limiting case of unduloids. The integration of the equation for the rolling curve is reminiscent of 
another important appearance of the conic sections; Kepler’s integration of the equations of motion of an object 
subjected to a central force field. It is likely that Delaunay, who was an astronomer by profession and who had 
written his dissertation on variational calculus, was influenced by Kepler’s calculations. 

Now consider an axially symmetric anisotropic surface energy functional F. This is equivalent to the Wulff shape 
W being axially symmetric and we let (u(v),v) denote the generating curve of W . Let µ1, (respectively µ2) denote 
the principal curvature of W along a meridian, (respectively a parallel), with respect to the inward pointing 
surface normal of W. Likewise, we let κi denote the corresponding principal curvatures of an axially symmetric 
surface Σ, with respect to the outward pointing surface normal. In this case, the equilibrium equation reduces to: 

𝜅𝜅𝜅𝜅1
𝜇𝜇𝜇𝜇1

+ 
𝜅𝜅𝜅𝜅2
𝜇𝜇𝜇𝜇2

≡ 2Λ0  =  constant 

which is a special case of Eq. (2). 
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Figure 1. Generating curves of Σ and W. 

The axially symmetric surfaces with constant anisotropic mean curvature will be called anisotropic Delaunay 
surfaces [7]. These can be found as follows. Let (r,z) denote the generating curve of such a surface Σ. To each point 
on Σ, there is a unique point on W where the normals to Σ and W agree. 

Then at these points, u and r are related by the quadratic equation (see Fig. 1): 

2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝜇𝜇𝜇𝜇2

+ Λ𝑟𝑟𝑟𝑟2 = 𝑐𝑐𝑐𝑐                                                                                                                                                       (4) 

where c is a real constant and Λ is the anisotropic mean curvature. Once 𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟,Λ, 𝑐𝑐𝑐𝑐) is determined from Eq. (4), 
the vertical coordinate can be determined by: 

𝑧𝑧𝑧𝑧 = ∫  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣0 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟(�̂�𝑣𝑣𝑣))𝑑𝑑𝑑𝑑�̂�𝑣𝑣𝑣  

To generate a wide variety of examples, we employ the Gielis formula [8]: 

𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟(𝜃𝜃𝜃𝜃,𝑚𝑚𝑚𝑚, 𝑛𝑛𝑛𝑛1,𝑛𝑛𝑛𝑛2,𝑛𝑛𝑛𝑛3,𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏) = ��(1/𝑎𝑎𝑎𝑎)cos �
𝑚𝑚𝑚𝑚𝜃𝜃𝜃𝜃
4 ��

𝑛𝑛𝑛𝑛2
+ �(1/𝑏𝑏𝑏𝑏)sin �

𝑚𝑚𝑚𝑚𝜃𝜃𝜃𝜃
4 ��

𝑛𝑛𝑛𝑛3
�
−𝑛𝑛𝑛𝑛1

                                 (5) 

This formula is an excellent source of curves with prescribed symmetries yielding a curve in polar form. Its utility 
in modeling natural shapes in a wide variety of circumstances is reviewed in [9]. We refer to the polar graphs 
given by Eq. (5) as Gielis curves. Given two convex Gielis curves, (𝑟𝑟𝑟𝑟(𝜎𝜎𝜎𝜎),𝑣𝑣𝑣𝑣(𝜎𝜎𝜎𝜎)), (𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡),𝛽𝛽𝛽𝛽(𝑡𝑡𝑡𝑡)) we form a ‘‘product’’ 
Wulff shape parameterized by: 

𝜒𝜒𝜒𝜒(𝜎𝜎𝜎𝜎, 𝑡𝑡𝑡𝑡) = �𝑟𝑟𝑟𝑟(𝜎𝜎𝜎𝜎)[𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡),𝛽𝛽𝛽𝛽(𝑡𝑡𝑡𝑡)],𝑣𝑣𝑣𝑣(𝜎𝜎𝜎𝜎)�          0 ≤ 𝜎𝜎𝜎𝜎 ≤ 𝜎𝜎𝜎𝜎‾ , 0 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑡𝑡𝑡𝑡‾                                                                 (6) 

For this type of Wulff shape, the analogues of the constant anisotropic surfaces found above can be found by 
replacing the cross-sectional circles by the (𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽) curve as in Fig. 2 and Fig. 3 (see [10]). 

There is at least one earlier appearance of a type of anisotropic Delaunay surface in the literature. Bernal and 
Fankuchen observed that equilibrium droplets of a type of nematic liquid crystal which was extracted from 
tobacco plant virus, take a form which they refer to as a tactoid, which resembles an American football. They state 
that the surface of these shapes satisfies Eq. (2).

3. HELICOIDAL SURFACES 

Oscar Perdomo [11] gave a remarkable generalization of the rolling construction which produces constant mean 
curvature surfaces which are invariant under a helicoidal motion. Such surfaces are known as CMC twizzlers. 
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Figure 2. Upper left: Wulff shape. Upper right: catenoid. Bottom left: unduloid. Bottom right: nodoid. 

Figure 3. Upper left: Wulff shape. Upper right: catenoid. Bottom left: unduloid. Bottom right: nodoid. 
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The immersion is represented as the orbit of a planar generating curve �𝑥𝑥𝑥𝑥(𝑠𝑠𝑠𝑠),𝑦𝑦𝑦𝑦(𝑠𝑠𝑠𝑠)� under the helicoidal motion, 
so that one has: 

𝑋𝑋𝑋𝑋(𝑠𝑠𝑠𝑠,𝜗𝜗𝜗𝜗) = ��𝑥𝑥𝑥𝑥(𝑠𝑠𝑠𝑠) + 𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦(𝑠𝑠𝑠𝑠)�𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜗𝜗𝜗𝜗 + 𝑐𝑐𝑐𝑐�                                                                                                        (7) 

where the angle ω is a constant which determines the pitch of the twizzler. To find the generating curve, Perdomo 
introduces a curve called the treadmill sled. The generating curve is the trace of a point which is rigidly attached 
to the treadmill sled which rolls without slipping on a treadmill. The coordinates (𝜉𝜉𝜉𝜉1, 𝜉𝜉𝜉𝜉2) of the treadmill sled are 
determined from the conservation law: 

Λ(𝜂𝜂𝜂𝜂12 + 𝜂𝜂𝜂𝜂22) +
2𝜂𝜂𝜂𝜂2

�1 +𝜔𝜔𝜔𝜔2𝜂𝜂𝜂𝜂12
+ 𝐴𝐴𝐴𝐴 ≡ 0                                                                                                                  (8) 

where A is a real constant. The generating curve is related to the treadmill sled by: 

𝑥𝑥𝑥𝑥 + 𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 = −(𝜂𝜂𝜂𝜂1 + 𝑖𝑖𝑖𝑖𝜂𝜂𝜂𝜂2) exp �−𝑖𝑖𝑖𝑖�  
𝑑𝑑𝑑𝑑𝜂𝜂𝜂𝜂2
𝜂𝜂𝜂𝜂1

�                                                                                                          (9) 

where 𝜂𝜂𝜂𝜂2 = 𝜂𝜂𝜂𝜂2(𝜂𝜂𝜂𝜂1) has been determined from Eq. (8). 

Perdomo’s construction generalizes to the anisotropic cases provided that the Wulff shape W is smooth and 
axially symmetric [12] (see Fig. 4, Fig. 5 and Fig. 6). The only modification in the construction is that Eq. (8) is 
changed to: 

Λ(𝜂𝜂𝜂𝜂12 + 𝜂𝜂𝜂𝜂22) +
2𝜂𝜂𝜂𝜂2

𝜇𝜇𝜇𝜇2 �𝜔𝜔𝜔𝜔𝜂𝜂𝜂𝜂1/�1 + 𝜔𝜔𝜔𝜔2𝜂𝜂𝜂𝜂12��1 +𝜔𝜔𝜔𝜔2𝜂𝜂𝜂𝜂12
+ 𝐴𝐴𝐴𝐴 ≡ 0                                                                      (10) 

It is worth noting that if a helicoidal or axially symmetric surface is represented in non-parametric form 𝑧𝑧𝑧𝑧 =
𝑧𝑧𝑧𝑧(𝑟𝑟𝑟𝑟) + 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃, then both Eq. (4) and Eq. (10) can be expressed as the single equation: 

2𝑟𝑟𝑟𝑟𝑧𝑧𝑧𝑧𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈3
𝜇𝜇𝜇𝜇2(𝜈𝜈𝜈𝜈3) + Λ𝑟𝑟𝑟𝑟2 = constant                                                                                                                                (11) 

4. ROTATING ANISOTROPIC DROPS 

We will consider the equilibrium shape of a non-liquid drop rotating with a constant angular velocity Ω about a 
vertical axis. The surface of the drop, which we denote by Σ, is represented as a smooth surface. The bulk of the 
drop is assumed to be occupied by an incompressible liquid of a constant mass density 𝜌𝜌𝜌𝜌1 while the drop is 
surrounded by a fluid of constant mass density 𝜌𝜌𝜌𝜌2. The drop’s free surface energy is assumed to be given by an 
anisotropic surface energy ℱ. The rotation contributes a second energy term of the form −Ω2Δℐ, where Δℐ is 
difference of moments of inertia about the vertical axis: 

Δℐ: = (𝜌𝜌𝜌𝜌1 − 𝜌𝜌𝜌𝜌2)�  
𝑈𝑈𝑈𝑈
𝑅𝑅𝑅𝑅2𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣 

where 𝑅𝑅𝑅𝑅: = �𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2. The last term represents twice the rotational kinetic energy of the drop. 

The total energy is thus of the form: 

ℰ: = ℱ −
Ω2

2 Δℐ + Λ0𝒱𝒱𝒱𝒱                                                                                                                                      (12) 

where 𝒱𝒱𝒱𝒱 denotes the volume of the drop and Λ0  is a Lagrange multiplier. Let Δ𝜌𝜌𝜌𝜌: = 𝜌𝜌𝜌𝜌1 − 𝜌𝜌𝜌𝜌2, then by introducing a 
constant 𝑎𝑎𝑎𝑎: = (Δ𝜌𝜌𝜌𝜌)Ω2, we can write the functional in the form: 

ℰ𝑎𝑎𝑎𝑎,Λ0 = ℱ −
𝑎𝑎𝑎𝑎
2�  

𝑈𝑈𝑈𝑈
𝑅𝑅𝑅𝑅2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + Λ0𝒱𝒱𝒱𝒱 
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Figure 4. Upper left: Wulff shape for 𝛾𝛾𝛾𝛾 = 1 − 0.2𝜈𝜈𝜈𝜈32. Upper right: treadmill sled (Λ,𝐴𝐴𝐴𝐴,𝜔𝜔𝜔𝜔) = (−.7, .5,2).  
Bottom: Corresponding generating curve and twizzler surface. The darkened arc of the generating curve corresponds to 
the displayed portion of the surface. 

          

Figure 5. Upper left: Wulff shape for 𝛾𝛾𝛾𝛾 = 1 + 0.2𝜈𝜈𝜈𝜈32. Upper right: treadmill sled (Λ,𝐴𝐴𝐴𝐴,𝜔𝜔𝜔𝜔) = (−.7, .5, 2). Bottom: 
Corresponding generating curve and twizzler surface. The darkened arc of the generating curve corresponds to the 
displayed portion of the surface. 
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Figure 6. Upper left: Wulff shape for 𝛾𝛾𝛾𝛾 = ((1 − 𝜈𝜈𝜈𝜈32)2 + 𝜈𝜈𝜈𝜈34)1/4. Upper right: treadmill sled (Λ,𝐴𝐴𝐴𝐴,𝜔𝜔𝜔𝜔) = (0, 2, 0.2).  
Bottom: Corresponding generating curve and twizzler surface. The darkened arc of the generating curve corresponds to 
the displayed portion of the surface. 

where U is the three-dimensional region occupied by the bulk of the drop. The Euler-Lagrange equation satisfied 
at points on the surface of the drop is: 

Λ = Λ0 −
𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅2

2                                                                                                                                                      (13) 

In the special case 𝛾𝛾𝛾𝛾 = 𝛾𝛾𝛾𝛾(𝜈𝜈𝜈𝜈3) if the surface is given as an axially symmetric graph 𝑥𝑥𝑥𝑥3 = 𝑍𝑍𝑍𝑍(𝑟𝑟𝑟𝑟) then: 

Λ =
−1
𝑟𝑟𝑟𝑟 �

𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈3
𝜇𝜇𝜇𝜇2

𝑍𝑍𝑍𝑍𝑟𝑟𝑟𝑟�
𝑟𝑟𝑟𝑟
 

where 𝜇𝜇𝜇𝜇2 = �𝛾𝛾𝛾𝛾 − 𝜈𝜈𝜈𝜈3𝛾𝛾𝛾𝛾′(𝜈𝜈𝜈𝜈3)�−1 is the principal curvature of W along a meridian. Using this, we obtain the first 
integral: 

2𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈3
𝜇𝜇𝜇𝜇2

𝑍𝑍𝑍𝑍𝑟𝑟𝑟𝑟 + Λ0𝑟𝑟𝑟𝑟2 −
𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟4

4 = 𝐶𝐶𝐶𝐶                                                                                                                              (14) 

where C is a constant of integration. If (𝑟𝑟𝑟𝑟,𝑣𝑣𝑣𝑣) denote the radial and vertical coordinates of 𝑊𝑊𝑊𝑊 at a point where the 
normals to Σ and 𝑊𝑊𝑊𝑊 agree, then this equation can be expressed as: 

2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + Λ0𝑟𝑟𝑟𝑟2 −
𝛼𝛼𝛼𝛼𝑟𝑟𝑟𝑟4

4 =  constant                                                                                                                      (15) 

To see this, we note that the principal curvatures of 𝑊𝑊𝑊𝑊 with respect to the inward pointing normal are given by 
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 = 1,2 where 1/𝜇𝜇𝜇𝜇2 = 𝛾𝛾𝛾𝛾 − 𝜈𝜈𝜈𝜈3𝛾𝛾𝛾𝛾′(𝜈𝜈𝜈𝜈3), 𝛾𝛾𝛾𝛾1 = (1 − 𝜈𝜈𝜈𝜈32)𝛾𝛾𝛾𝛾′′(𝜈𝜈𝜈𝜈3) + 1/𝜇𝜇𝜇𝜇2. Then 𝑟𝑟𝑟𝑟 = �1− 𝜈𝜈𝜈𝜈32/𝜇𝜇𝜇𝜇2,𝑣𝑣𝑣𝑣 = 𝜈𝜈𝜈𝜈3/𝜇𝜇𝜇𝜇2 + 𝛾𝛾𝛾𝛾′(𝜈𝜈𝜈𝜈3) 
parameterizes the generating curve of 𝑊𝑊𝑊𝑊. Using 𝜈𝜈𝜈𝜈3 = (1 + 𝑍𝑍𝑍𝑍𝑟𝑟𝑟𝑟2)−1/2, it follows that 𝑟𝑟𝑟𝑟: = 𝑍𝑍𝑍𝑍𝑟𝑟𝑟𝑟𝜈𝜈𝜈𝜈3/𝜇𝜇𝜇𝜇2. 

For closed genus zero surfaces we can let r approach 0 and we obtain that 𝐶𝐶𝐶𝐶 = 0 and Eq. (15) reduces to a cubic 
which we write as: 

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟3

4 − Λ0𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟 = 0                                                                                                                                          (16) 
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The discriminant is 𝜗𝜗𝜗𝜗(𝜈𝜈𝜈𝜈3) = 𝑎𝑎𝑎𝑎Λ03 − 27(𝑎𝑎𝑎𝑎2/4)�𝑟𝑟𝑟𝑟(𝜈𝜈𝜈𝜈3)�2. We first assume 0 < 𝑎𝑎𝑎𝑎 = (Δ𝜌𝜌𝜌𝜌)Ω2. Then Λ0 ≤ 0 implies that 
the discriminant is always negative and the cubic has a unique real root. The surface can be found explicitly by 
setting 𝑘𝑘𝑘𝑘: = �−16Λ0/(3𝑎𝑎𝑎𝑎) using: 

𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑘𝑘sinh �
1
3 arcSinh �

32𝑟𝑟𝑟𝑟
𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘3�� 

Surfaces of this type are shown in Fig. 7 and Fig. 8. 

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟3

4 − Λ0𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟 = 0                                                                                                                                          (17) 

We will describe a construction of the part of the generating curve 𝐶𝐶𝐶𝐶 which lies in the first quadrant. If 𝑊𝑊𝑊𝑊 is 
invariant by a reflection through the plane 𝑥𝑥𝑥𝑥3 = 0, then 𝐶𝐶𝐶𝐶 will also be invariant under a horizontal reflection. If 
0 < Λ0 < 3(𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟max

2 /4)1/3 the discriminant has a sign change when: 

𝑟𝑟𝑟𝑟0 = 2𝑎𝑎𝑎𝑎 �
Λ0
3𝑎𝑎𝑎𝑎�

3/2

 

In this case, 𝐶𝐶𝐶𝐶 will be obtained by piecing together three curves. Let: 

𝑘𝑘𝑘𝑘: = �16Λ0
3𝑎𝑎𝑎𝑎  

For 𝑟𝑟𝑟𝑟max ≥ 𝑟𝑟𝑟𝑟 ≥ 𝑟𝑟𝑟𝑟0 , the cubic has a unique real root: 

𝑟𝑟𝑟𝑟1 = 𝑘𝑘𝑘𝑘 cosh �
1
3 arcCosh �

32𝑟𝑟𝑟𝑟
𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘3�� 

For 𝑟𝑟𝑟𝑟0 ≥ 𝑟𝑟𝑟𝑟 ≥ −𝑟𝑟𝑟𝑟0: 

𝑟𝑟𝑟𝑟2 = 𝑘𝑘𝑘𝑘 cos �
1
3𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 �

32𝑟𝑟𝑟𝑟
𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘3��  

For 0 ≥ 𝑟𝑟𝑟𝑟 ≥ −𝑟𝑟𝑟𝑟0: 

𝑟𝑟𝑟𝑟3 = 𝑘𝑘𝑘𝑘cos �
1
3 arcCos �

32𝑟𝑟𝑟𝑟
𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘3� −

2𝜋𝜋𝜋𝜋
3 � 

In all three cases, the vertical coordinate of the generating curve (𝑟𝑟𝑟𝑟,𝑍𝑍𝑍𝑍) is obtained from: 

𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖(𝑣𝑣𝑣𝑣) = �  
𝑣𝑣𝑣𝑣

𝑣𝑣𝑣𝑣0
∂𝑢𝑢𝑢𝑢(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)(𝑟𝑟𝑟𝑟(�̂�𝑣𝑣𝑣))𝑑𝑑𝑑𝑑�̂�𝑣𝑣𝑣 + 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 = 1,2,3 

for appropriate constants 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  which must be chosen so that the three curves fit together as in Fig. 9. 

Figure 7. Equilibrium drops for the functional 𝛾𝛾𝛾𝛾: = 1 − 0.2𝜈𝜈𝜈𝜈32. Left: (Λ0,𝑎𝑎𝑎𝑎) = (0.2, 0). Center: (Λ0,𝑎𝑎𝑎𝑎) = (−1, 1). Right: 
(Λ0,𝑎𝑎𝑎𝑎) = (0, 1). 



29 
Athena Transactions in Mathematical and Physical Sciences, Volume 1 

Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) 
 

 

 

 
Figure 8. Equilibrium drops. Left: 𝑎𝑎𝑎𝑎 = 0. Center: 𝑎𝑎𝑎𝑎 = 1. Right: 𝑎𝑎𝑎𝑎 = 100. 

 
Figure 9. Gluing branches of the profile curve. 
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