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1. INTRODUCTION 

An R-function, or Rvachev function, is a real-valued function whose sign does not change if none of the signs of its 
arguments change; that is, its sign is determined solely by the signs of its arguments. Interpreting positive values 
as true and negative values as false, an R-function is transformed into a ”companion“ Boolean function (the two 
functions are called friends). R-functions are used in computer graphics and geometric modeling in the context of 
implicit surfaces and function representations. They also appear in certain boundary-valued problems, and are 
also popular in certain artificial intelligence applications, where they are used in pattern recognition. The 
Rvachev’s method implies an ability to represent a geometric object ”implicitly” by a property Q(x) where 𝑥𝑥𝑥𝑥 ∈ 𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛, 
as Ω = {𝑥𝑥𝑥𝑥 ∶  𝑄𝑄𝑄𝑄(𝑥𝑥𝑥𝑥) is true}. 

R-function is a real-valued function of real variables having the property that their signs are completely 
determined by the signs of their arguments, and are independent of the magnitude of the arguments. For example, 
the following functions satisfy this property: 

• 𝑊𝑊𝑊𝑊1 = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 

• 𝑊𝑊𝑊𝑊2 = 𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥 +�𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥2 + 𝑥𝑥𝑥𝑥2 

• 𝑊𝑊𝑊𝑊3 = 2 + 𝑥𝑥𝑥𝑥2+𝑥𝑥𝑥𝑥2 + 22  

The main idea is to find corresponding R-functions f : Rn → R for some Boolean function φ : {0,1}n → {0,1}. Roughly 
speaking, the Boolean functions are usually defined using logic operations ∧ (and; minimum of the two 
arguments), ∨ (or; maximum of two arguments), and ¬ (negation; 1−x) on n logic variables. The Boolean function 
φ in the above definition is called the companion function of the R-function f. Informally, a real function f is an R-
function if it can change its property (sign) only when some of its arguments change the same property (sign). 
The notion of R-functions is a special case of a more general concept of R-mapping that is associated with 
qualitative k-partitions of arbitrary domains and multi-valued logic functions [1]. We follow this idea and have 
proposed multiple-valued logic, namely 3-valued Lukasiewicz logic [2]. 

In this article we introduce a new logic: three-valued Gödel logic with constants and 
involution using the possibility to represent n-variable R-functions (real functions) such 
that the number of branches is equal to 33𝑛𝑛𝑛𝑛 instead of 22𝑛𝑛𝑛𝑛 in the case of classical (2-
valued) logic which increases the expressibility. This many-valued logic is offered for 
application in the class of R-functions partitioned in branches corresponding to some 
Gödel logic formulas. 
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The set of all R-functions that have the same logic companion function is called a branch of the set of R-functions. 
Since the number of distinct logic functions of n arguments is 22𝑛𝑛𝑛𝑛 , there are also 22𝑛𝑛𝑛𝑛  distinct branches of R-
functions of n arguments. 

The set of R-functions is infinite. However, for applications, it is not necessary to know all R-functions; one needs 
only to be able to construct R-functions that belong to a specified branch. The recipes for such constructions are 
implied by the general properties of R-functions that follow almost immediately from their definition. Complete 
proofs, as well as many additional properties, can be found in [1,3]. 

1. The set of R-functions is closed under composition. In other words, any function obtained by composition 
of R-functions is also an R-function. 

2. If a continuous function 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1, . . . , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) has zeros only on coordinate hyperplanes (i.e. 𝑓𝑓𝑓𝑓 =  0 implies that one 
or more 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 =  0, 𝑗𝑗𝑗𝑗 =  1,2, . . . ,𝑛𝑛𝑛𝑛), then f is an R-function. 

3. The product of R-functions is an R-function. If the R-function 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1, . . . ,𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) belongs to some branch, and 
𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥1, . . . ,𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)> 0 is an arbitrary function, then the function 𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔 also belongs to the same branch. 

4. If 𝑓𝑓𝑓𝑓1  and 𝑓𝑓𝑓𝑓2  are R-functions from the same branch, then the sum 𝑓𝑓𝑓𝑓1+𝑓𝑓𝑓𝑓2 is an R-function belonging to the same 
branch. 

5. If fφ is an R-function whose logic companion function is φ, and C is some constant, then Cfφ is also an R-
function. The logic companion function of Cf is φ if C > 0, or ¬φ if C < 0. 

6. If fφ(x1,...,xn) is an R-function whose logic companion function is φ(X1,...,Xn) and f can be integrated with 
respect to xi, then the function ∫ 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1, . . . ,𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖

0 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  is an R-function whose logic companion function is Xi ⇔ 
φ(X1,...,Xn). 

The above list of properties is not exhaustive, but it is enough to suggest that more complex R-functions may be 
constructed from simpler functions. In particular, the closure under composition leads to the notion of sufficiently 
complete systems of R-functions, i.e. collections of R-functions that can be composed in order to obtain an R-
function from any branch. 

Theorem 1. Let H be some system of R-functions and G be the corresponding system of the logic companion functions. 
The system H is sufficiently complete if the system G is complete. [2] 

It is easy to check that the following functions are R-functions (their logic companion function in parentheses): 

• 𝐶𝐶𝐶𝐶 ≡ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                  (logical 1) 
• �̅�𝑥𝑥𝑥  ≡  −𝑥𝑥𝑥𝑥                                     (logical negation ¬)  
• 𝑥𝑥𝑥𝑥1  ∧1 𝑥𝑥𝑥𝑥1  ≡  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2)       (logical conjunction ∧)  
• 𝑥𝑥𝑥𝑥1  ∨1  𝑥𝑥𝑥𝑥1  ≡  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2)     (logical disjunction ∨) 

Theorem 1 states that an R-function from any branch can be defined using composition of just these functions. 
But these functions are not differentiable. For applications where differentiability is important, for example in 
solutions of boundary value problems, another system is needed. For this one we need suitable R-conjunction and 
R-disjunction. Let us consider a triangle with two sides of length x1 and x2. The square of the third side is 
determined by the law of cosines as 𝑥𝑥𝑥𝑥12 + 𝑥𝑥𝑥𝑥22  −  2𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥1𝑥𝑥𝑥𝑥2, where α is the cosine of the angle between the two sides. 
It is easy to see that the function: 

𝑓𝑓𝑓𝑓 = 𝑥𝑥𝑥𝑥1 + 𝑥𝑥𝑥𝑥2  −  �𝑥𝑥𝑥𝑥12 + 𝑥𝑥𝑥𝑥22  −  2𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥1𝑥𝑥𝑥𝑥2 

satisfies the desired properties. Moreover, the R-function corresponding to logical disjunction is: 

𝑓𝑓𝑓𝑓 = 𝑥𝑥𝑥𝑥1 + 𝑥𝑥𝑥𝑥2  +  �𝑥𝑥𝑥𝑥12 + 𝑥𝑥𝑥𝑥22  −  2𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥1𝑥𝑥𝑥𝑥2 

In this article we suggest a new logic: 3-valued Gödel Logic with constant and involution for application to R-
functions that will be a new companion function for R-functions. 
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2. THREE-VALUED GÖDEL LOGIC WITH CONSTANTS AND INVOLUTION

(−∞, +∞) (−∞, 0), [0], +∞).
𝐺𝐺3 = ({−1,0,1},∨,∧, →, ∼, −1,0,1) (2,2,2,1,0,0,0) 𝑥𝑥 ∨ 𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥, 𝑦𝑦), 𝑥𝑥 ∧ 𝑦𝑦 =

𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦), ∼ 𝑥𝑥 → 𝑦𝑦 

Table 1. The → operation. 

R 𝑥𝑥 · 𝑦𝑦 𝜑𝜑(𝑝𝑝, 𝑞𝑞) = (𝑝𝑝 ↔ 𝑞𝑞) ∧ ((𝑝𝑝 ∨ 𝑞𝑞) ∨ ∼ (𝑝𝑝 ∧ 𝑞𝑞))
{−1,0,1} + ↔ 1, 0, − ↔ −1

Table 2. Logic companion for the R-function x  y. 

R 𝑥𝑥 · 𝑦𝑦

Table 3. The R-function x  y. 

R −𝑥𝑥
R 𝑐𝑐 ∈  (0, +∞)
R 𝑐𝑐 ∈  (−∞, 0) and its Gödel companion is −1.
R

R 𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥, 𝑦𝑦) ∨
R 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) ∧
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2. THREE-VALUED GÖDEL LOGIC WITH CONSTANTS AND INVOLUTION 

Partition (−∞, +∞) into three sets: (−∞, 0), [0], +∞). 

Let 𝐺𝐺𝐺𝐺3 = ({−1,0,1},∨,∧,→,∼,−1,0,1) be the algebra of type (2,2,2,1,0,0,0), where 𝑥𝑥𝑥𝑥 ∨ 𝑥𝑥𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥,𝑥𝑥𝑥𝑥), 𝑥𝑥𝑥𝑥 ∧ 𝑥𝑥𝑥𝑥 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑥𝑥𝑥𝑥), ∼ is changing of sign and 𝑥𝑥𝑥𝑥 → 𝑥𝑥𝑥𝑥 is given in Table 1. 

Table 1. The → operation. 

For the R-function 𝑥𝑥𝑥𝑥 · 𝑥𝑥𝑥𝑥 we can take the logic companion 𝜑𝜑𝜑𝜑(𝑝𝑝𝑝𝑝,𝑞𝑞𝑞𝑞) = (𝑝𝑝𝑝𝑝 ↔ 𝑞𝑞𝑞𝑞) ∧ ((𝑝𝑝𝑝𝑝 ∨ 𝑞𝑞𝑞𝑞) ∨ ∼ (𝑝𝑝𝑝𝑝 ∧ 𝑞𝑞𝑞𝑞)), the logical 
function of which in {−1,0,1} is given in Table 2 with the following correspondence: + ↔ 1, 0,− ↔−1. 

Table 2. Logic companion for the R-function x ⋅ y. 

For the R-function 𝑥𝑥𝑥𝑥 · 𝑥𝑥𝑥𝑥 please refer to Table 3. 

Table 3. The R-function x ⋅ y. 

R-function −𝑥𝑥𝑥𝑥 and its Gödel companion is changing sign. 

R-function 𝑐𝑐𝑐𝑐 ∈  (0, +∞) and its Gödel companion is 1. 

R-function 𝑐𝑐𝑐𝑐 ∈  (−∞, 0) and its Gödel companion is −1. 

R-function 0 and its Gödel companion is 0. 

R-function 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥,𝑥𝑥𝑥𝑥) and its Gödel companion is disjunction ∨. 

R-function 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑥𝑥𝑥𝑥) and its Gödel companion is conjunction ∧. 
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(𝐴𝐴, 𝑜𝑜1, . . . , 𝑜𝑜𝑜𝑜)
𝐴𝐴𝐴𝐴𝑚𝑚 𝑚𝑚 ∈  𝑍𝑍+ primal

({0,1},∨,∧, −.0,1) ({0, . . . , 𝑜𝑜 −  𝑙𝑙}, 𝑚𝑚𝑚𝑚𝑜𝑜(𝑥𝑥, 𝑦𝑦), 𝑥𝑥 + 𝑙𝑙(𝑚𝑚𝑜𝑜𝑚𝑚 𝑜𝑜)) 

Theorem 2 An algebra (A,o ,...,on) is primal iff 2-generated free algebra is isomorphic to A A  

𝐆𝐆𝟑𝟑 G3 = ({−1,0,1}, ∨ ∧ →, ∼ − 𝐺𝐺3
3

Theorem 3 The algebra 𝐺𝐺3
3 𝑚𝑚𝑖𝑖 1-generated free algebra in the variety 𝑮𝑮𝟑𝟑 with free generator g = (−1,0,1).

Proof. Let ¬x = x → −1. Let us consider the algebra

G3 = ({−1,0,1}, ∨ ∧, →, ∼, −1,0,1)

𝑔𝑔 = (−1,0,1) 𝑔𝑔 𝐺𝐺3
(1, −1, −1), (−1,1, −1), (−1, −1,1) (−1, −1, −1),

(0,0,0), (1,1,1). ¬𝑔𝑔 = (1, −1, −1), ¬ ∼ 𝑔𝑔 = (−1, −1,1), ¬𝑔𝑔 ∨ ¬ ∼ 𝑔𝑔 = (−1,1, −1).
𝐺𝐺3 ∨ ∧

𝑃𝑃 = 𝑄𝑄 𝐆𝐆𝟑𝟑 𝑮𝑮𝟑𝟑
𝟑𝟑 𝑔𝑔

𝑃𝑃 = 𝑄𝑄 𝐆𝐆𝟑𝟑 𝐺𝐺3
3 𝑃𝑃 = 𝑄𝑄

𝑮𝑮𝟑𝟑 𝐺𝐺3 𝑎𝑎 ∈ 𝐺𝐺3
𝜋𝜋𝑘𝑘: 𝐺𝐺3

3 → 𝐺𝐺3.  𝜋𝜋𝑘𝑘(𝑔𝑔) = 𝑎𝑎 𝑃𝑃 = 𝑄𝑄 𝐺𝐺3
3 𝑔𝑔

𝐺𝐺3
3 𝐆𝐆𝟑𝟑 𝑔𝑔 = (−1,0,1)

Theorem 4 The algebra 𝐺𝐺3
32  is 2-generated free algebra in the variety 𝑮𝑮𝟑𝟑 with free generators 𝑔𝑔1 =

(1,1,1,0,0,0, −1, −1, −1), 𝑔𝑔2 = (1,0, −1,0, −1,1,1,0, −1).

Corollary 5 The algebra 𝐺𝐺3 is primal. In other words, the operations ∨ ∧, →, ∼, −1,0,1 of the algebra 𝐺𝐺3 generate 
all functions in 𝐺𝐺3

|𝐺𝐺3|𝑚𝑚
 for each 𝑚𝑚 ∈ 𝑍𝑍+.

Theorem 6 The number of branches of n-ary R-functions is equal to 33𝑛𝑛 .

Figure 1. Graphical representation of the algebra 𝐺𝐺3
3. 
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𝟑𝟑
𝟑𝟑

In the study of many-valued logics, one is led to consider a finite algebra (𝐴𝐴, 𝑜𝑜1, . . . , 𝑜𝑜𝑜𝑜) that generate by 
composition all functions in 𝐴𝐴𝐴𝐴𝑚𝑚 for each 𝑚𝑚 ∈ 𝑍𝑍+. Such algebras are called primal. For example, Boolean 
algebra ({0,1},∨,∧, −.0,1) and, more generally, Post algebras ({0, . . . , 𝑜𝑜 − 𝑙𝑙}, 𝑚𝑚𝑚𝑚𝑜𝑜(𝑥𝑥, 𝑦𝑦), 𝑥𝑥 + 𝑙𝑙(𝑚𝑚𝑜𝑜𝑚𝑚 𝑜𝑜)) are primal 
algebras. 

For primal algebras the following theorem holds: 

Theorem 2. An algebra (A, o1, ..., on) is primal iff 2-generated free algebra is isomorphic to 𝐴𝐴|𝐴𝐴|2. [4,5] 

Let 𝐆𝐆𝟑𝟑 be the variety generated by algebra G3 = ({−1,0,1}, ∨, ∧, →, ∼, −1,0,1). The algebra 𝐺𝐺33 is depicted in Fig. 1. 

Theorem 3. The algebra 𝐺𝐺33 𝑚𝑚𝑖𝑖 1-generated free algebra in the variety 𝑮𝑮𝟑𝟑 with free generator g = (−1,0,1). 

Proof. Let ¬x = x → −1. Let us consider the algebra: 

G3 = ({−1,0,1}, ∨, ∧, →, ∼, −1,0,1) 

and its element 𝑔𝑔 = (−1,0,1). Now we show that 𝑔𝑔 generates the algebra 𝐺𝐺3. It can be shown this fact if we 
obtain the elements (1, −1, −1), (−1,1, −1), (−1, −1,1) previously having the constant elements (−1, −1, −1),
(0,0,0), (1,1,1). ¬𝑔𝑔 = (1, −1, −1), ¬ ∼ 𝑔𝑔 = (−1, −1,1), ¬𝑔𝑔 ∨ ¬ ∼ 𝑔𝑔 = (−1,1, −1). 

From here we can obtain all elements of the algebra 𝐺𝐺3 by the lattice operations ∨ and ∧. Now we show that 
one-variable identity 𝑃𝑃 = 𝑄𝑄 is true in the variety 𝐆𝐆𝟑𝟑 iff the identity is true in 𝑮𝑮 for generator 𝑔𝑔. Indeed, it is 
obvious that if 𝑃𝑃 = 𝑄𝑄 is true in the variety 𝐆𝐆𝟑𝟑, then it is true in the algebra 𝐺𝐺33. Let us suppose that 𝑃𝑃 = 𝑄𝑄 is not 
true in the variety 𝑮𝑮𝟑𝟑. Then it is not true in the algebra 𝐺𝐺3 for some element 𝑎𝑎 ∈ 𝐺𝐺3. Then, we can take 
corresponding projection 𝜋𝜋𝑘𝑘: 𝐺𝐺33 → 𝐺𝐺3. where 𝜋𝜋𝑘𝑘(𝑔𝑔) = 𝑎𝑎. It means that 𝑃𝑃 = 𝑄𝑄 is not true in 𝐺𝐺33 for the generator 
𝑔𝑔. From here we conclude that 𝐺𝐺33 is 1-generated free algebra in the variety 𝐆𝐆𝟑𝟑 with free generator 𝑔𝑔 = (−1,0,1). 

In the same manner the following is proven: 

Theorem 4. The algebra 𝐺𝐺33
2 is 2-generated free algebra in the variety 𝑮𝑮𝟑𝟑 with free generators 

𝑔𝑔1 = (1,1,1,0,0,0,−1,−1,−1),𝑔𝑔2 = (1,0,−1,0,−1,1,1,0,−1). 

From this theorem holds: 

Corollary 5. The algebra 𝐺𝐺3 is primal. In other words, the operations ∨, ∧, →, ∼, −1,0,1 of the algebra 𝐺𝐺3 generate 
all functions in 𝐴𝐴|𝐴𝐴|𝑚𝑚 for each 𝑚𝑚 ∈ 𝑍𝑍+. 

From the above mentioned we conclude: 

Theorem 6. The number of branches of n-ary R-functions is equal to 33𝑛𝑛 . 
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Figure 1. Graphical representation of the algebra 𝐺𝐺3
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