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1. INTRODUCTION 

Methods based on the formalisms of monomiality [1,2] and/or umbrality, in their different declinations 
[3,4,5,6,7,8,9,10], have been useful tools to simplify and unify the treatment of special functions and polynomials. 

Within the first point of view, special polynomials are reduced to ordinary monomials, while the latter can be 
exploited to reduce higher transcendent to elementary functions. The Bessel functions can e. g. be viewed as 
ordinary Gaussians and the Hermite or Laguerre polynomials can be treated as ordinary Newton binomials [9,10]. 

In this article we apply the technicalities of the monomiality/umbral formalism to study polynomials belonging 
to families (like the Mittag-Leffler polynomials and the relevant generalizations [11,12]) which can be expressed 
as combinations of lower factorial polynomials (l.f.p.). 

The interest in the problem is due to the possibility of combining different algebraic procedures, offering 
significant simplifications, for the derivation of the relevant properties. 

The lower factorial polynomials are expressed in terms of the Pochhammer symbol [13] as: 

𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛 =
Γ(𝑥𝑥𝑥𝑥 + 1)

Γ(𝑥𝑥𝑥𝑥 − 𝑛𝑛𝑛𝑛 + 1)                                                                                                                           (1) 

They belong to the family of Sheffer sequences [14] and are monomials [1,2] under the action of the derivative 𝑃𝑃𝑃𝑃� 
and multiplicative 𝑀𝑀𝑀𝑀� operators, which defined in terms of differential operators read: 

𝑃̂𝑃𝑃𝑃 = 𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1
𝑀̂𝑀𝑀𝑀 = 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒−𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥

                                                                                                                                                            (2) 

where 𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥 is the ordinary derivative. 

Within the context of monomiality the 𝑃𝑃𝑃𝑃�,𝑀𝑀𝑀𝑀�  define the key tools of the relevant formalism. They satisfy the 
commutation bracket �𝑃𝑃𝑃𝑃�,𝑀𝑀𝑀𝑀�� = 𝚤𝚤𝚤𝚤̂  and, regarding the specific monomials on which they operate, they produce the 

The theory of special polynomials, and of special functions as well, is greatly simplified 
by the use of algebraic methods of umbral nature. In this article we embed the umbral 
and monomiality formalism to study special polynomials expressed in terms of lower 
factorial polynomials. We touch on the theory of Mittag-Leffler polynomials and derive 
the relevant properties using elementary means. We also provide a general description 
of non-standard partial differential equations, playing a central role in the theory of this 
family of polynomials. 
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same recurrences as in the case of ordinary monomials (see [1,2] for further comments). Regarding therefore the 
lower factorial polynomials, the following identities are satisfied: 

𝑃𝑃𝑃𝑃�𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1(𝑥𝑥𝑥𝑥)
𝑀̂𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+1(𝑥𝑥𝑥𝑥)                                                                                                                                                (3)
𝑀̂𝑀𝑀𝑀𝑃𝑃𝑃𝑃�𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)

 

The last of which, written in terms of the differential realization of the operators 𝑃𝑃𝑃𝑃� ,𝑀𝑀𝑀𝑀�  in Eq. (2) reads: 

𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒−𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥�𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1�𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥�𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) − 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥 − 1)� = 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)                                                                        (4) 

Furthermore, the multiplicative operator allows to construct the associated QM polynomial according to the 
identity: 

𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = 𝑀̂𝑀𝑀𝑀𝑛𝑛𝑛𝑛1                                                                                                                                                        (5) 

Where 1 is the monomiality vacuum (see final comments in Section 4). Regarding the case under study, we find: 

𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = �𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒−∂𝑥𝑥𝑥𝑥�𝑛𝑛𝑛𝑛1 = 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒−∂𝑥𝑥𝑥𝑥 … 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒−∂𝑥𝑥𝑥𝑥1 = 𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥 − 1)(𝑥𝑥𝑥𝑥 − 2) … =
Γ(𝑥𝑥𝑥𝑥 + 1)

Γ(𝑥𝑥𝑥𝑥 − 𝑘𝑘𝑘𝑘 + 1)                                (6) 

The generating functions of any quasi-monomial can therefore be cast in the form: 

𝑔𝑔𝑔𝑔𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = � 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! 𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑀̂𝑀𝑀𝑀1                                                                                                                    (7) 

Regarding the lower factorial polynomials we obtain: 

� 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = � 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛!
Γ(𝑥𝑥𝑥𝑥 + 1)

Γ(𝑥𝑥𝑥𝑥 − 𝑛𝑛𝑛𝑛 + 1) = � 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛� = (1 + 𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥                                                               (8) 

The last identity deserves further comments, useful for next developments. 

According to the previous remarks, it is evident that: 

𝑃̂𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝜆𝜆𝜆𝜆𝑥̂𝑥𝑥𝑥𝜑𝜑𝜑𝜑0 = � 
∞

𝑛𝑛𝑛𝑛=0

𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! 𝑃̂𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛 = � 
∞

𝑛𝑛𝑛𝑛=0

𝑛𝑛𝑛𝑛𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! (𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛−1 = 𝜆𝜆𝜆𝜆(1 + 𝜆𝜆𝜆𝜆)𝑥𝑥𝑥𝑥                                                                         (9) 

Namely, (1 + 𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥 is the eigenfunction of the derivative operator 𝑃𝑃𝑃𝑃�, defined in the first equation of Eq. (2). 

The concept and the technicalities that we have outlined in these introductory notes will be exploited in the 
forthcoming sections to develop a self-consistent theory of l.f.p. based polynomials. 

2. EMBEDDING UMBRAL AND MONOMIALITY FORMALISMS  

The umbral formalism (as conceived in [9,10] and references therein) is a fairly natural extension of the 
monomiality point of view. The generating function of l.f.p. in terms of umbral operators can be written as: 

� 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! (𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑥̂𝑥𝑥𝑥𝜑𝜑𝜑𝜑0                                                                                                                                           (10) 

If 𝑥𝑥𝑥𝑥� is interpreted as an operator such that (for further comments see [1,2,9,10]): 

𝑥̂𝑥𝑥𝑥𝑣𝑣𝑣𝑣𝜑𝜑𝜑𝜑0 = (𝑥𝑥𝑥𝑥)𝑣𝑣𝑣𝑣  
𝑥̂𝑥𝑥𝑥𝜇𝜇𝜇𝜇𝑥̂𝑥𝑥𝑥𝑣𝑣𝑣𝑣𝜑𝜑𝜑𝜑0 = (𝑥𝑥𝑥𝑥)𝑣𝑣𝑣𝑣+𝜇𝜇𝜇𝜇                                                                                                                                                (11) 
𝜑𝜑𝜑𝜑0 ≡  𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑣𝑣𝑣𝑣𝑢𝑢𝑢𝑢𝑣𝑣𝑣𝑣𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢     with  𝜈𝜈𝜈𝜈,𝜇𝜇𝜇𝜇 ∈ 𝑅𝑅𝑅𝑅 



87 
Athena Transactions in Mathematical and Physical Sciences, Volume 1 

Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) 
 

 

 

The notion of vacuum, albeit discussed in the quoted references concerning the umbral calculus, will be touched 
on in the concluding comments. 

We can now combine the umbral and monomiality formalism, by noting that: 

𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1 → ∂𝑥̂𝑥𝑥𝑥
𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒−𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 → 𝑥̂𝑥𝑥𝑥

                                                                                                                                                       (12) 

Accordingly, the exponential umbral function in Eq. (10) satisfies the identity: 

∂𝑥̂𝑥𝑥𝑥𝑒𝑒𝑒𝑒𝜆𝜆𝜆𝜆𝑥̂𝑥𝑥𝑥𝜑𝜑𝜑𝜑0 = 𝜆𝜆𝜆𝜆𝑒𝑒𝑒𝑒𝜆𝜆𝜆𝜆𝑥̂𝑥𝑥𝑥𝜑𝜑𝜑𝜑0                                                                                                                                            (13) 

Furthermore, the cos-like expansion: 

cos(𝜆𝜆𝜆𝜆𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0 =  �
(−1)𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆2⋅𝑟𝑟𝑟𝑟𝑥̂𝑥𝑥𝑥2𝑟𝑟𝑟𝑟

(2𝑢𝑢𝑢𝑢)! 𝜑𝜑𝜑𝜑0

∞

𝑟𝑟𝑟𝑟=0

                                                                                                               (14) 

is easily shown to satisfy the cyclic property, under derivative, of the ordinary trigonometric functions. Indeed 
we get: 

∂𝑥̂𝑥𝑥𝑥𝑛𝑛𝑛𝑛cos (𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0 = (−1)𝑛𝑛𝑛𝑛 cos �𝑥̂𝑥𝑥𝑥 + 𝑛𝑛𝑛𝑛
𝜋𝜋𝜋𝜋
2�𝜑𝜑𝜑𝜑0                                                                                                     (15a) 

and in particular: 

∂𝑥̂𝑥𝑥𝑥2 cos(𝜆𝜆𝜆𝜆𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0 = −𝜆𝜆𝜆𝜆2 cos(𝜆𝜆𝜆𝜆𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0                                                                                                                (15b) 

In terms of ordinary variables, we evidently obtain that: 

cos(𝜆𝜆𝜆𝜆𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0 = 𝑣𝑣𝑣𝑣(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥) = �
(−1)𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆2⋅𝑟𝑟𝑟𝑟(𝑥𝑥𝑥𝑥)2𝑟𝑟𝑟𝑟

(2𝑢𝑢𝑢𝑢)! =
(1 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆)𝑥𝑥𝑥𝑥 + (1 − 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆)𝑥𝑥𝑥𝑥

2

∞

𝑟𝑟𝑟𝑟=0

                                                  (16) 

and also that, on account of the correspondence in Eq. (12), it satisfies the “differential” equation: 

𝑣𝑣𝑣𝑣�𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥 + 2)� − 2𝑣𝑣𝑣𝑣�𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥 + 1)�+ 𝑣𝑣𝑣𝑣(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥) = 𝜆𝜆𝜆𝜆2𝑣𝑣𝑣𝑣(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥)                                                                                     (17) 

As a further example, aimed at completing the scenario of how to embed the prescribed algebraic tools, we 
underscore that it is possible to construct new and meaningful families of polynomials. 

We consider therefore a polynomial defined in terms of the Newton binomial: 

𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = (𝑦𝑦𝑦𝑦 − 𝑣𝑣𝑣𝑣𝑥̂𝑥𝑥𝑥)𝑛𝑛𝑛𝑛𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0                                                                                                                              (18) 

written in an umbral form with 𝑥̂𝑥𝑥𝑥,𝜑𝜑𝜑𝜑0 defined in Eq. (11) and 𝑣𝑣𝑣𝑣,𝜑𝜑𝜑𝜑0 analogous umbral quantities specified by the 
condition: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝜙𝜙𝜙𝜙0 =
1

Γ(𝑣𝑣𝑣𝑣 + 1) 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣̂𝑣𝑣𝑣𝜇𝜇𝜇𝜇𝜙𝜙𝜙𝜙0 = 𝑣𝑣𝑣𝑣𝜈𝜈𝜈𝜈+𝜇𝜇𝜇𝜇𝜙𝜙𝜙𝜙0 =
1

Γ(𝑣𝑣𝑣𝑣 + 𝜇𝜇𝜇𝜇 + 1)                                                                                                               (19) 

𝜙𝜙𝜙𝜙0 ≡ umbral – vacuum 

The polynomials 𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥, 𝑢𝑢𝑢𝑢) are therefore defined as: 

𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �(−1)𝑘𝑘𝑘𝑘 �𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘� 𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛−𝑘𝑘𝑘𝑘 (𝑥𝑥𝑥𝑥)𝑘𝑘𝑘𝑘

𝑘𝑘𝑘𝑘!

𝑛𝑛𝑛𝑛

𝑘𝑘𝑘𝑘=0

                                                                                                              (20) 
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It is interesting to note that the generating function of the polynomials in Eq. (20) writes: 

� 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! 𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = 𝑒𝑒𝑒𝑒𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑥̂𝑥𝑥𝑥𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0                                                                                                                   (21) 

The key point is now that of specifying the mathematical meaning of 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥��𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0, which can be inferred from the 
following “reduction” path: 

𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑥̂𝑥𝑥𝑥𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0 = � 
∞

𝑟𝑟𝑟𝑟=0

 
(−𝑡𝑡𝑡𝑡)𝑟𝑟𝑟𝑟

𝑢𝑢𝑢𝑢!
(𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝜙𝜙𝜙𝜙0)(𝑥̂𝑥𝑥𝑥𝑟𝑟𝑟𝑟𝜑𝜑𝜑𝜑0) = 𝐶𝐶𝐶𝐶0(−𝑡𝑡𝑡𝑡𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0

𝐶𝐶𝐶𝐶0(𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0 = 𝑣𝑣𝑣𝑣0(𝑥𝑥𝑥𝑥) = � 
∞

𝑟𝑟𝑟𝑟=0

 
(𝑥𝑥𝑥𝑥)𝑟𝑟𝑟𝑟
(𝑢𝑢𝑢𝑢!)2

                                                                            (22) 

The function in the second equation of Eq. (22) is the umbral version of the zero-th order Tricomi-Bessel function 
[9,10]. 

The ordinary Tricomi-Bessel function is an eigenvalue of the Laguerre derivative [1,2], namely: 

𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶0(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥) = 𝜆𝜆𝜆𝜆𝐶𝐶𝐶𝐶0(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥)
𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿 = 𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥

                                                                                                                                      (23) 

We find therefore that its umbral extension is an eigenvalue of: 

𝑃̂𝑃𝑃𝑃𝑀̂𝑀𝑀𝑀𝑃̂𝑃𝑃𝑃 = �𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1�𝑥𝑥𝑥𝑥(1 − 𝑒𝑒𝑒𝑒−𝐷𝐷𝐷𝐷𝑥𝑥𝑥𝑥)
𝑃̂𝑃𝑃𝑃𝑀̂𝑀𝑀𝑀𝑃̂𝑃𝑃𝑃𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥 + 1)[𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥 + 1) − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥)] − 𝑥𝑥𝑥𝑥[𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥 − 1)]

                                                             (24) 

Therefore we find: 

�𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1�𝑥𝑥𝑥𝑥�1− 𝑒𝑒𝑒𝑒−𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥�𝑣𝑣𝑣𝑣0(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥) = 𝜆𝜆𝜆𝜆𝑣𝑣𝑣𝑣0(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥)                                                                                                     (25) 

The above eigenvalue problem reduces to a difference equation, which will be discussed elsewhere. 

The polynomials in Eq. (20) can be interpreted as an umbral image of the Laguerre polynomials. They can indeed 
be written as: 

𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0 
(26) 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = � 
𝑛𝑛𝑛𝑛

𝑟𝑟𝑟𝑟=0

(−1)𝑟𝑟𝑟𝑟 �𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢� 𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛−𝑟𝑟𝑟𝑟 𝑥𝑥𝑥𝑥

𝑟𝑟𝑟𝑟

𝑢𝑢𝑢𝑢!  

and note that they satisfy the partial differential equation [9,10]: 

∂𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0 = −∂𝑥̂𝑥𝑥𝑥𝑥̂𝑥𝑥𝑥 ∂𝑥̂𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0                                                                                                            (27) 

whose properties and solutions will be discussed in Section 4. 

Remaining within the same context we like to stress that Hermite-like polynomials can be constructed using an 
operational relationship, which, adapted to the case under study, reads (for the introduction of two-variable 
Hermite polynomials, see [15]): 

𝑒𝑒𝑒𝑒𝑦𝑦𝑦𝑦 ∂𝑥𝑥𝑥𝑥2𝑥̂𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝜙𝜙𝜙𝜙0 = 𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0 = 𝑛𝑛𝑛𝑛!� 

�𝑛𝑛𝑛𝑛2�

𝑟𝑟𝑟𝑟=0

 
(𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛−2𝑟𝑟𝑟𝑟𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟

(𝑛𝑛𝑛𝑛 − 2𝑢𝑢𝑢𝑢)! 𝑢𝑢𝑢𝑢! =  𝑛𝑛𝑛𝑛!� 

�𝑛𝑛𝑛𝑛2�

𝑟𝑟𝑟𝑟=0

 
𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟(2𝑢𝑢𝑢𝑢)!
𝑢𝑢𝑢𝑢! � 𝑥𝑥𝑥𝑥

𝑛𝑛𝑛𝑛 − 2𝑢𝑢𝑢𝑢�                                   (28a) 

and that the relevant generating function can be derived from that of the ordinary case1 and by using the 
previously outlined correspondences: 

 
1 Namely ∑𝑛𝑛𝑛𝑛=0

∞   𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛!
𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡2 
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It is interesting to note that the generating function of the polynomials in Eq. (20) writes: 

� 
∞

𝑛𝑛=0

𝑡𝑡𝑛𝑛

𝑛𝑛! 𝜅𝜅𝑛𝑛
(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒𝑦𝑦𝑦𝑦𝑒𝑒−𝑡𝑡𝑐𝑐𝑥̂𝑥𝜙𝜙0𝜑𝜑0                                                                                                                   (21) 

The key point is now that of specifying the mathematical meaning of 𝑒𝑒𝑡𝑡𝑐𝑐𝑥̂𝑥𝜙𝜙0𝜑𝜑0, which can be inferred from the 
following “reduction” path: 

𝑒𝑒−𝑡𝑡𝑐𝑐𝑥̂𝑥𝜙𝜙0𝜑𝜑0 = � 
∞

𝑟𝑟=0

 
(−𝑡𝑡)𝑟𝑟

𝑟𝑟!
(𝑐𝑐𝑟𝑟𝜙𝜙0)(𝑥̂𝑥𝑟𝑟𝜑𝜑0) = 𝐶𝐶0(−𝑡𝑡𝑥̂𝑥)𝜑𝜑0

𝐶𝐶0(𝑥̂𝑥)𝜑𝜑0 = 𝑐𝑐0(𝑥𝑥) = � 
∞

𝑟𝑟=0

 
(𝑥𝑥)𝑟𝑟
(𝑟𝑟!)2

                                                                            (22) 

The function in the second equation of Eq. (22) is the umbral version of the zero-th order Tricomi-Bessel 
function [9,10]. 

The ordinary Tricomi-Bessel function is an eigenvalue of the Laguerre derivative [1,2], namely: 

𝐷𝐷�𝑥𝑥𝐿𝐿 𝐶𝐶0(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆0(𝜆𝜆𝜆𝜆)
𝐷𝐷�𝑥𝑥𝐿𝐿 = 𝐷𝐷�𝑥𝑥𝑥𝑥𝐷𝐷�𝑥𝑥

                                                                                                                                      (23) 

We find therefore that its umbral extension is an eigenvalue of: 

𝑃̂𝑃𝑀̂𝑀𝑃̂𝑃 = �𝑒𝑒𝐷̂𝐷𝑥𝑥 − 1�𝑥𝑥(1 − 𝑒𝑒−𝐷𝐷𝑥𝑥)
𝑃̂𝑃𝑀̂𝑀𝑃̂𝑃𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 1)[𝑓𝑓(𝑥𝑥 + 1) − 𝑓𝑓(𝑥𝑥)] − 𝑥𝑥[𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥 − 1)]

                                                             (24) 

Therefore we find: 

�𝑒𝑒𝐷̂𝐷𝑥𝑥 − 1�𝑥𝑥�1− 𝑒𝑒−𝐷̂𝐷𝑥𝑥�𝑐𝑐0(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝑐𝑐0(𝜆𝜆𝜆𝜆)                                                                                                     (25) 

The above eigenvalue problem reduces to a difference equation, which will be discussed elsewhere. 

The polynomials in Eq. (20) can be interpreted as an umbral image of the Laguerre polynomials. They can 
indeed be written as: 

𝜅𝜅𝑛𝑛(𝑥𝑥,𝑦𝑦) = 𝐿𝐿𝑛𝑛(𝑥̂𝑥, 𝑦𝑦)𝜑𝜑0 
(26) 

𝐿𝐿𝑛𝑛(𝑥𝑥,𝑦𝑦) = � 
𝑛𝑛

𝑟𝑟=0

(−1)𝑟𝑟 �𝑛𝑛𝑟𝑟� 𝑦𝑦
𝑛𝑛−𝑟𝑟 𝑥𝑥

𝑟𝑟

𝑟𝑟!  

and note that they satisfy the partial differential equation [9,10]: 

∂𝑦𝑦𝐿𝐿𝑛𝑛(𝑥̂𝑥,𝑦𝑦)𝜑𝜑0 = −∂𝑥̂𝑥𝑥̂𝑥 ∂𝑥̂𝑥𝐿𝐿𝑛𝑛(𝑥̂𝑥,𝑦𝑦)𝜑𝜑0                                                                                                            (27) 

whose properties and solutions will be discussed in Section 4. 

Remaining within the same context we like to stress that Hermite-like polynomials can be constructed using an 
operational relationship, which, adapted to the case under study, reads (for the introduction of two-variable 
Hermite polynomials, see [15]): 

𝑒𝑒𝑦𝑦 ∂𝑥𝑥2𝑥̂𝑥𝑛𝑛𝜙𝜙0 = 𝐻𝐻𝑛𝑛(𝑥̂𝑥,𝑦𝑦)𝜙𝜙0 = 𝑛𝑛!� 

�𝑛𝑛2�

𝑟𝑟=0

 
(𝑥𝑥)𝑛𝑛−2𝑟𝑟𝑦𝑦𝑟𝑟

(𝑛𝑛 − 2𝑟𝑟)! 𝑟𝑟! =  𝑛𝑛!� 

�𝑛𝑛2�

𝑟𝑟=0

 
𝑦𝑦𝑟𝑟(2𝑟𝑟)!
𝑟𝑟! � 𝑥𝑥

𝑛𝑛 − 2𝑟𝑟�                                   (28a) 

and that the relevant generating function can be derived from that of the ordinary case1 and by using the 
previously outlined correspondences: 
                                                             
1 Namely ∑𝑛𝑛=0

∞   𝑡𝑡
𝑛𝑛

𝑛𝑛!
𝐻𝐻𝑛𝑛(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒𝑡𝑡𝑡𝑡+𝑦𝑦𝑡𝑡2 
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It is interesting to note that the generating function of the polynomials in Eq. (20) writes: 

� 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! 𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛
(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = 𝑒𝑒𝑒𝑒𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑥̂𝑥𝑥𝑥𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0                                                                                                                   (21) 

The key point is now that of specifying the mathematical meaning of 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥��𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0, which can be inferred from the 
following “reduction” path: 

𝑒𝑒𝑒𝑒−𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑥̂𝑥𝑥𝑥𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0 = � 
∞

𝑟𝑟𝑟𝑟=0

 
(−𝑡𝑡𝑡𝑡)𝑟𝑟𝑟𝑟

𝑢𝑢𝑢𝑢!
(𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝜙𝜙𝜙𝜙0)(𝑥̂𝑥𝑥𝑥𝑟𝑟𝑟𝑟𝜑𝜑𝜑𝜑0) = 𝐶𝐶𝐶𝐶0(−𝑡𝑡𝑡𝑡𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0

𝐶𝐶𝐶𝐶0(𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0 = 𝑣𝑣𝑣𝑣0(𝑥𝑥𝑥𝑥) = � 
∞

𝑟𝑟𝑟𝑟=0

 
(𝑥𝑥𝑥𝑥)𝑟𝑟𝑟𝑟
(𝑢𝑢𝑢𝑢!)2

                                                                            (22) 

The function in the second equation of Eq. (22) is the umbral version of the zero-th order Tricomi-Bessel function 
[9,10]. 

The ordinary Tricomi-Bessel function is an eigenvalue of the Laguerre derivative [1,2], namely: 

𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶0(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥) = 𝜆𝜆𝜆𝜆𝐶𝐶𝐶𝐶0(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥)
𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿 = 𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷�𝑥𝑥𝑥𝑥

                                                                                                                                      (23) 

We find therefore that its umbral extension is an eigenvalue of: 

𝑃̂𝑃𝑃𝑃𝑀̂𝑀𝑀𝑀𝑃̂𝑃𝑃𝑃 = �𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1�𝑥𝑥𝑥𝑥(1 − 𝑒𝑒𝑒𝑒−𝐷𝐷𝐷𝐷𝑥𝑥𝑥𝑥)
𝑃̂𝑃𝑃𝑃𝑀̂𝑀𝑀𝑀𝑃̂𝑃𝑃𝑃𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥 + 1)[𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥 + 1) − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥)] − 𝑥𝑥𝑥𝑥[𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥 − 1)]

                                                             (24) 

Therefore we find: 

�𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1�𝑥𝑥𝑥𝑥�1− 𝑒𝑒𝑒𝑒−𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥�𝑣𝑣𝑣𝑣0(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥) = 𝜆𝜆𝜆𝜆𝑣𝑣𝑣𝑣0(𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥)                                                                                                     (25) 

The above eigenvalue problem reduces to a difference equation, which will be discussed elsewhere. 

The polynomials in Eq. (20) can be interpreted as an umbral image of the Laguerre polynomials. They can indeed 
be written as: 

𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0 
(26) 

𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = � 
𝑛𝑛𝑛𝑛

𝑟𝑟𝑟𝑟=0

(−1)𝑟𝑟𝑟𝑟 �𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢� 𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛−𝑟𝑟𝑟𝑟 𝑥𝑥𝑥𝑥

𝑟𝑟𝑟𝑟

𝑢𝑢𝑢𝑢!  

and note that they satisfy the partial differential equation [9,10]: 

∂𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0 = −∂𝑥̂𝑥𝑥𝑥𝑥̂𝑥𝑥𝑥 ∂𝑥̂𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0                                                                                                            (27) 

whose properties and solutions will be discussed in Section 4. 

Remaining within the same context we like to stress that Hermite-like polynomials can be constructed using an 
operational relationship, which, adapted to the case under study, reads (for the introduction of two-variable 
Hermite polynomials, see [15]): 

𝑒𝑒𝑒𝑒𝑦𝑦𝑦𝑦 ∂𝑥𝑥𝑥𝑥2𝑥̂𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝜙𝜙𝜙𝜙0 = 𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0 = 𝑛𝑛𝑛𝑛!� 

�𝑛𝑛𝑛𝑛2�

𝑟𝑟𝑟𝑟=0

 
(𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛−2𝑟𝑟𝑟𝑟𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟

(𝑛𝑛𝑛𝑛 − 2𝑢𝑢𝑢𝑢)! 𝑢𝑢𝑢𝑢! =  𝑛𝑛𝑛𝑛!� 

�𝑛𝑛𝑛𝑛2�

𝑟𝑟𝑟𝑟=0

 
𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟(2𝑢𝑢𝑢𝑢)!
𝑢𝑢𝑢𝑢! � 𝑥𝑥𝑥𝑥

𝑛𝑛𝑛𝑛 − 2𝑢𝑢𝑢𝑢�                                   (28a) 

and that the relevant generating function can be derived from that of the ordinary case1 and by using the 
previously outlined correspondences: 

 
1 Namely ∑𝑛𝑛𝑛𝑛=0

∞   𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛!
𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡2 
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� 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛!𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0 = 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑥̂𝑥𝑥𝑥+𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡2𝜙𝜙𝜙𝜙0 = 𝑒𝑒𝑒𝑒𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡2(1 + 𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥                                                                                     (28b) 

These last identities can also be viewed as a particular solution of a generalization of the heat equation, 
commented in Section 4, along with other relevant technicalities of the formalism we are developing. 

3. MITTAG-LEFFLER POLYNOMIALS 

In Section 2 we introduced Laguerre-like polynomials, using a composed umbral procedure. Let us now take 
advantage from the formalism to note that, by keeping the derivative of both sides of Eq. (27) with respect to the 
variable 𝑥̂𝑥𝑥𝑥, thus eventually finding: 

∂𝑥̂𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0 = −𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦 − 𝑣𝑣𝑣𝑣𝑥̂𝑥𝑥𝑥)𝑛𝑛𝑛𝑛−1𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0 = −𝑛𝑛𝑛𝑛�  
𝑛𝑛𝑛𝑛−1

𝑟𝑟𝑟𝑟=0

(−1)𝑟𝑟𝑟𝑟 �𝑛𝑛𝑛𝑛 − 1
𝑢𝑢𝑢𝑢 � 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛−𝑟𝑟𝑟𝑟

(𝑥𝑥𝑥𝑥)𝑟𝑟𝑟𝑟
(𝑢𝑢𝑢𝑢 + 1)!                             (29) 

A family of polynomials associated with the generalized Laguerre [16] has been introduced in the past [17] as: 

Λ𝑛𝑛𝑛𝑛
(𝛼𝛼𝛼𝛼)(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = � 

𝑛𝑛𝑛𝑛

𝑟𝑟𝑟𝑟=0

(−1)𝑟𝑟𝑟𝑟 �𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢�𝑦𝑦𝑦𝑦
𝑛𝑛𝑛𝑛−𝑟𝑟𝑟𝑟 (𝑥𝑥𝑥𝑥)𝑟𝑟𝑟𝑟

Γ(𝑢𝑢𝑢𝑢 + 𝛼𝛼𝛼𝛼 + 1)                                                                                         (30) 

We get therefore: 

∂𝑥̂𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0 = −𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦Λ𝑛𝑛𝑛𝑛−1
(1) (𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0                                                                                                                (31) 

Finally, multiplying the right side of Eq. (31) by 𝑥̂𝑥𝑥𝑥 we obtain: 

𝑥̂𝑥𝑥𝑥Λ𝑛𝑛𝑛𝑛−1
(1) (𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜑𝜑𝜑𝜑0 = 𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦�  

𝑛𝑛𝑛𝑛−1

𝑘𝑘𝑘𝑘=0

(−1)𝑘𝑘𝑘𝑘 �𝑛𝑛𝑛𝑛 − 1
𝑘𝑘𝑘𝑘 �

𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛−𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥)𝑘𝑘𝑘𝑘+1
(𝑘𝑘𝑘𝑘 + 1)!                                                                              (32) 

The Mittag-Leffler polynomials are well documented in mathematical literature since their introduction in 1891 
(see [11,12]) and are defined as: 

𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) = � 
𝑛𝑛𝑛𝑛−1

𝑘𝑘𝑘𝑘=0

2𝑘𝑘𝑘𝑘 �𝑛𝑛𝑛𝑛 − 1
𝑘𝑘𝑘𝑘 �

(𝑥𝑥𝑥𝑥)𝑘𝑘𝑘𝑘+1
(𝑘𝑘𝑘𝑘 + 1)!                                                                                                                  (33) 

It is therefore evident (see Eq. (32) and Eq. (33)) that we can establish the following identity: 

𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒−𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥Λ𝑛𝑛𝑛𝑛−1
(1) �𝑥𝑥𝑥𝑥,−1

2
� = (−2)−(𝑛𝑛𝑛𝑛−1)𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)                                                                                                      (34) 

According to the previous identity, the Mittag-Leffler polynomials can be viewed as an umbral extension of the 
Laguerre family. 

It is furthermore interesting (and straightforward) to obtain the generating function: 

� 
∞

𝑛𝑛𝑛𝑛=0

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛+1
(𝑥𝑥𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑥̂𝑥𝑥𝑥𝐶𝐶𝐶𝐶1(2𝑡𝑡𝑡𝑡𝑥̂𝑥𝑥𝑥)𝜑𝜑𝜑𝜑0                                                                                                                 (35a) 

and also: 

� 
∞

𝑛𝑛𝑛𝑛=0

 
𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛! 𝑔𝑔𝑔𝑔(𝑛𝑛𝑛𝑛+1)+𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑥̂𝑥𝑥𝑥(1 + 2𝑣𝑣𝑣𝑣𝑥̂𝑥𝑥𝑥)𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒2𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑥̂𝑥𝑥𝑥𝜙𝜙𝜙𝜙0𝜑𝜑𝜑𝜑0 = 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡�  
𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠=0

 �𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 �2𝑠𝑠𝑠𝑠𝑥̂𝑥𝑥𝑥𝑠𝑠𝑠𝑠+1𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠+1(2𝑡𝑡𝑡𝑡𝑥̂𝑥𝑥𝑥)𝜙𝜙𝜙𝜙0              (35b) 

where: 
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𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥) = � 
∞

𝑟𝑟𝑟𝑟=0

𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟

(𝑢𝑢𝑢𝑢 +𝑚𝑚𝑚𝑚)! 𝑢𝑢𝑢𝑢!                                                                                                                                  (36) 

is the m-th order Tricomi Bessel and 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚(𝑥̂𝑥𝑥𝑥)𝜙𝜙𝜙𝜙0 is its umbral image (see Section 4 for more comments). This result 
yields the idea of how the merging of the two techniques (umbral & monomiality) works to unveil the intimate 
thread, very often unsuspected, connecting the different forms of polynomials and/or special functions. 

In a forthcoming dedicated investigation, we will see how old and new results on Mittag-Leffler polynomials and 
generalizations can be obtained within the framework of the formalism we have illustrated so far. 

4. FINAL COMMENTS 

In the course of the previous sections, we have described the details of an operational formalism, but we have left 
poorly justified some points. 

The concept of vacua regarding monomials and umbral techniques, albeit justified in the dedicated literature, is 
worth to be underscored here. 

4.1. Monomials 

We consider the specific example of Hermite polynomials, whose multiplicative operator is realized as: 

𝑀̂𝑀𝑀𝑀 = (𝑥𝑥𝑥𝑥 + 2𝑦𝑦𝑦𝑦 ∂𝑥𝑥𝑥𝑥)                                                                                                                                                (37) 

If it is raised to any integer, the Burchnall rule [18,19] yields the following identity: 

𝑀̂𝑀𝑀𝑀𝑛𝑛𝑛𝑛 = (𝑥𝑥𝑥𝑥 + 2𝑦𝑦𝑦𝑦 ∂𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛 = � 
𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠=0

2𝑠𝑠𝑠𝑠 �𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠�𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛−𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)∂𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠                                                                                        (38) 

It is evident that, if acting on a constant, for simplicity 1, it yields: 

𝑀̂𝑀𝑀𝑀𝑛𝑛𝑛𝑛 = 𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)                                                                                                                                                    (39) 

If not, namely if the multiplicative operator is applied to any function 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) (assumed to be continuous and 
infinitely differentiable), the conclusion is: 

𝑀̂𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = � 
𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠=0

2𝑠𝑠𝑠𝑠 �𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠�𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛−𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠)(𝑥𝑥𝑥𝑥)                                                                                                     (40) 

If furthermore the function can be expanded in Hermite polynomials, namely: 

𝑀̂𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥 + 2𝑦𝑦𝑦𝑦 ∂𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛�  
∞

𝑟𝑟𝑟𝑟=0

 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝐻𝐻𝐻𝐻𝑟𝑟𝑟𝑟(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = � 
∞

𝑟𝑟𝑟𝑟=0

 𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝐻𝐻𝐻𝐻𝑟𝑟𝑟𝑟+𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)                                                               (41) 

The validity of identities of the type in Eq. (39) holds even for non-integer value of the exponent. Keeping 𝑛𝑛𝑛𝑛 = −𝑣𝑣𝑣𝑣,
𝑣𝑣𝑣𝑣 ∈ 𝑅𝑅𝑅𝑅, we get: 

𝑀̂𝑀𝑀𝑀−𝑣𝑣𝑣𝑣1 =
1

Γ(𝑣𝑣𝑣𝑣)�  
∞

0
𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥+2𝑦𝑦𝑦𝑦 ∂𝑥𝑥𝑥𝑥)1𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣−1𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 =

1
Γ(𝑣𝑣𝑣𝑣)�  

∞

0
𝑒𝑒𝑒𝑒−𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠2𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣−1𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠                                                   (42) 

The last integral in Eq. (42) converges for 𝑦𝑦𝑦𝑦 = −|𝑦𝑦𝑦𝑦| and provides the integral representation of the negative index 
Hermite functions [16]. 

The formalism of quasi monomiality can be extended to non-integer “pseudo-Hermite” polynomials and it is easily 
checked that they satisfy the same recurrences of the ordinary Hermite [16]. This statement holds true for all the 
polynomial families defined as quasi monomials. But this suggestion will not be pursued in this article. 
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4.2. Umbral 

The definition of umbral operator and of the associated vacuum has been discussed in sufficient detail in previous 
articles, for a more pedagogic discussion we address the reader to [9,10]. In the case of the l.f.p. they can be 
identified with: 

𝑥̂𝑥𝑥𝑥 → 𝑒𝑒𝑒𝑒∂𝑧𝑧𝑧𝑧

𝜙𝜙𝜙𝜙0 → 𝜙𝜙𝜙𝜙(𝑧𝑧𝑧𝑧) =
Γ(𝑥𝑥𝑥𝑥 + 1)

Γ(𝑥𝑥𝑥𝑥 − 𝑧𝑧𝑧𝑧 + 1)
                                                                                                                              (43) 

therefore: 

𝑥̂𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝜙𝜙𝜙𝜙0 → 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛∂𝑧𝑧𝑧𝑧𝜙𝜙𝜙𝜙(𝑧𝑧𝑧𝑧)�
𝑧𝑧𝑧𝑧=0

=
Γ(𝑥𝑥𝑥𝑥 + 1)

Γ(𝑥𝑥𝑥𝑥 − 𝑛𝑛𝑛𝑛 + 1) = (𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛                                                                                         (44) 

and the extension to the non-integer or negative exponents is naturally entangled with the definitions in Eq. (43) 
and Eq. (44) themselves. 

Another point deserving clarification is the statement about the possibility of writing quasi monomial/umbral 
polynomials in the form of a Newton binomial. As we see this holds true for Laguerre type polynomials but, for 
example, the Hermite family and its extensions (Eq. (28a), Eq. (28b)) apparently do not allow such a possibility. 

The introduction of the Hermite umbral operator has been extremely useful to overcome this difficulty, namely 
[9,10,20,21] regarding the two variable Hermite of order 2, we find: 

𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0 = �𝑥̂𝑥𝑥𝑥 + ℎ̂𝑦𝑦𝑦𝑦�
𝑛𝑛𝑛𝑛
𝜙𝜙𝜙𝜙0𝜆𝜆𝜆𝜆0

ℎ̂𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆0 =
𝑦𝑦𝑦𝑦
𝑟𝑟𝑟𝑟
2𝑢𝑢𝑢𝑢!

Γ �𝑢𝑢𝑢𝑢2 + 1�
�cos �𝑢𝑢𝑢𝑢

𝜋𝜋𝜋𝜋
2��

                                                                                                                         (45) 

It is evident that, accordingly, we can cast the previous definition in the form: 

𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0 = 𝑒𝑒𝑒𝑒ℎ̂𝑦𝑦𝑦𝑦𝜕𝜕𝜕𝜕𝑥̈𝑥𝑥𝑥 𝑥̂𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝜙𝜙𝜙𝜙0𝜆𝜆𝜆𝜆0                                                                                                                            (46) 

Furthermore, on account of the second equation in Eq. (45), we obtain: 

𝑒𝑒𝑒𝑒ℎ̂𝑦𝑦𝑦𝑦 ∂𝑥𝑥𝑥𝑥𝜆𝜆𝜆𝜆0 = 𝑒𝑒𝑒𝑒𝑦𝑦𝑦𝑦 ∂𝑥̂𝑥𝑥𝑥
2
                                                                                                                                                  (47) 

It is therefore evident that the "Hermite" polynomials in Eq. (46) satisfy the heat type equation: 

∂
∂𝑦𝑦𝑦𝑦𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛

(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0 =
∂2

∂𝑥̂𝑥𝑥𝑥2 𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛
(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0

𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥̂𝑥𝑥𝑥, 0)𝜙𝜙𝜙𝜙0 = (𝑥𝑥𝑥𝑥)𝑛𝑛𝑛𝑛
                                                                                                                   (48) 

which has obvious analogies with the ordinary case (see [22,23,24,25]) and with the so-called heat polynomials. 

In non-umbral terms, Eq. (48) belongs to a family of evolutive problems involving finite differences, namely (see 
the correspondences in Eq. (12)): 

∂
∂𝑦𝑦𝑦𝑦𝐹𝐹𝐹𝐹

(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥 + 2,𝑦𝑦𝑦𝑦)− 2𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥 + 1, 𝑦𝑦𝑦𝑦) + 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)

𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥, 0) = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥)
                                                                                 (49) 

This observation allows a further appreciation of the usefulness of the symbolic methods which yield the 
possibility of getting a clear thread between apparently disconnected fields of research. 

The m-th order Hermite polynomials [9,10,26,27,28,29]: 

𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 𝑛𝑛𝑛𝑛!� 

�𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚�

𝑟𝑟𝑟𝑟=0

𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟

𝑢𝑢𝑢𝑢! (𝑛𝑛𝑛𝑛 −𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢)!                                                                                                                      (50) 
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can also be written in the form of a Newton binomial, provided that: 

𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛
(𝑚𝑚𝑚𝑚)(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = �𝑥𝑥𝑥𝑥 + ℎ̂(𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚)�

𝑛𝑛𝑛𝑛
𝜙𝜙𝜙𝜙0

ℎ̂(𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚)
𝑟𝑟𝑟𝑟 𝜙𝜙𝜙𝜙0 =

𝛿𝛿𝛿𝛿 �𝑚𝑚𝑚𝑚 � 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚� − 𝑢𝑢𝑢𝑢, 0�

Γ� 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚 + 1�
𝑢𝑢𝑢𝑢! 𝑦𝑦𝑦𝑦

𝑟𝑟𝑟𝑟
𝑚𝑚𝑚𝑚

                                                                                                                (51) 

We have quoted this example because apart from its relevance to the matter treated in this article, it may be a 
useful starting point, as illustrated elsewhere, to establish further advances in the theory of lacunary Hermite 
polynomial series. 

The last point we touch on here is associated with the solution of differential equations satisfied by the Laguerre-
like polynomials in Eq. (26), which can be written as: 

∂𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓(𝑥̂𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0 = ∂𝑥̂𝑥𝑥𝑥𝑥̂𝑥𝑥𝑥 ∂𝑥̂𝑥𝑥𝑥𝑓𝑓𝑓𝑓(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0
𝑓𝑓𝑓𝑓(𝑥̂𝑥𝑥𝑥, 0)𝜙𝜙𝜙𝜙0 = 𝑒𝑒𝑒𝑒−𝑥̂𝑥𝑥𝑥𝜙𝜙𝜙𝜙0
∂𝑥̂𝑥𝑥𝑥𝑥̂𝑥𝑥𝑥 ∂𝑥̂𝑥𝑥𝑥 → 𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1 + 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒−𝐷𝐷𝐷𝐷𝑥𝑥𝑥𝑥�𝑒𝑒𝑒𝑒𝐷̂𝐷𝐷𝐷𝑥𝑥𝑥𝑥 − 1�

2
                                                                                                          (52) 

Just mimicking the solution of the ordinary (non-umbral) case (see [9,10]), we can write the corresponding 
solution as: 

𝑓𝑓𝑓𝑓(𝑥̂𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝜙𝜙𝜙𝜙0 =
1

1 + 𝑦𝑦𝑦𝑦 𝑒𝑒𝑒𝑒
− 𝑥̂𝑥𝑥𝑥
1+𝑦𝑦𝑦𝑦𝜙𝜙𝜙𝜙0                                                                                                                            (53) 

which using the correspondence in Eq. (12) and Eq. (13) yields: 

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) =
1

1 + 𝑦𝑦𝑦𝑦 �1−
1

1 + 𝑦𝑦𝑦𝑦�
𝑥𝑥𝑥𝑥

                                                                                                                        (54) 

The last solution and Eq. (52) deserve the same already given comment regarding the generalized heat equation 
in Eq. (48). 

The issues associated with differential equations and the umbral calculus (of finite differences) have attracted 
much interest, specifically in e. g. discrete quantum mechanics (see e.g. [3,4,5,6,7,8,9,10]). 

Regarding this context, an important role is played by evolutive problems of the Schrödinger type. Within this 
framework we note e.g. that the equation: 

𝑖𝑖𝑖𝑖 ∂𝑡̂𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 𝑡̂𝑡𝑡𝑡)𝜙𝜙𝜙𝜙0 = 𝐻𝐻𝐻𝐻𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 𝑡̂𝑡𝑡𝑡)𝜙𝜙𝜙𝜙0
𝑖𝑖𝑖𝑖[𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡 + 1) − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡)] = 𝐻𝐻𝐻𝐻𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡)

                                                                                                                (55) 

where "time" is an "umbral" variable and 𝐻𝐻𝐻𝐻 is an "ordinary" Hamiltonian operator (Fig. 1). 

The solution of Eq. (55) can be cast in the form: 

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 𝑡̂𝑡𝑡𝑡)𝜙𝜙𝜙𝜙0 = 𝑈̂𝑈𝑈𝑈𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 0)𝜙𝜙𝜙𝜙0
𝑈̂𝑈𝑈𝑈 = 𝑒𝑒𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡̂𝑡𝑡𝑡

                                                                                                                                   (56) 

Where the evolution operator in non-umbral form reads: 

𝑈̂𝑈𝑈𝑈 = (1 − 𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻)𝑡𝑡𝑡𝑡                                                                                                                                                      (57) 

Thus considering, for example, a Hamiltonian of the type 𝐻𝐻𝐻𝐻 = −𝜆𝜆𝜆𝜆∂𝑥𝑥𝑥𝑥2  and 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 0) = 𝑒𝑒𝑒𝑒−𝑥𝑥𝑥𝑥2: 

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = (1 + 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆 ∂𝑥𝑥𝑥𝑥2)𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒−𝑥𝑥𝑥𝑥2 =
1

√2𝜋𝜋𝜋𝜋
�  
+∞

−∞
 (1 − 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘2)𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒−

𝑘𝑘𝑘𝑘2
2 𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘                                                         (58) 

The study of umbral evolutive PDE requires a more accurate analysis which cannot be comprised in the space of 
this concluding section. In this article we have gone through many aspects of symbolic calculus. Further results 
will be more thoroughly discussed elsewhere. 
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Figure 1. Evolution of the square modulus of an initial Gaussian function ruled by the heat-like Eq. (55); dash (t=0), dot 
(t=2), continuous (t=3), dash-dot (t=5). 
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[15] P. Appell, J. Kampé de Fériet. Fonctions Hypergéométriques et Hypersphériques: Polynomes d'Hermite. 
Paris: Gauthier-Villars, 1926. (in French) 

[16] L.C. Andrews. Special Functions for Engineers and Applied Mathematicians. New York: Macmillan, 1985. 

[17] D. Babusci, G. Dattoli, K. Górska, K. Penson. Lacunary Generating Functions for the Laguerre Polynomials. 
Séminaire Lotharingien de Combinatoire, 2017, 76: B76b. 

[18] J.L. Burchnall. A Note on the Polynomials of Hermite. The Quarterly Journal of Mathematics, 1941, 12(1): 9–
11. https://doi.org/10.1093/qmath/os-12.1.9 

[19] G. Dattoli, S. Lorenzutta, A. Torre. Miscellaneous Identities of Generalized Hermite Polynomials. Le 
Matematiche, 1997, 52(2): 337–343. 

[20] G. Dattoli, B. Germano, M.R. Martinelli, P.E. Ricci. Lacunary Generating Functions of Hermite Polynomials and 
Symbolic Methods. Ilirias Journal of Mathematics, 2015, 4(1): 16–23. 

[21] N. Raza, U. Zainab, S. Araci, A. Esi. Identities Involving 3-Variable Hermite Polynomials Arising From Umbral 
Method. Advances in Difference Equations, 2020: 640. https://doi.org/10.1186/s13662-020-03102-0 

[22] D.V. Widder. The Heat Equation. Pure and Applied Mathematics, Vol. 67. New York: Academic Press, 1975. 

[23] P.C. Rosenbloom, D.V. Widder. Expansions in Terms of Heat Polynomials and Associated Functions. 
Transactions of the American Mathematical Society, 1959, 92(2): 220–266. 
https://doi.org/10.1090/S0002-9947-1959-0107118-2 

[24] D.V. Widder. The Role of the Appell Transformation in the Theory of Heat Conduction. Transactions of the 
American Mathematical Society, 1963, 109(1): 121–134. 
https://doi.org/10.1090/S0002-9947-1963-0154068-2 

[25] P. Appell. Sur l’Équation Z
y

Z
x ∂

∂−
∂
∂

2

2
 et la Théorie de la Chaleur. Journal de Mathématiques Pures et 

Appliquées, 1892, 8: 187–216. (in French) 

[26] D.T. Haimo, C. Markett. A Representation Theory for Solutions of a Higher Order Heat Equation I. Journal of 
Mathematical Analysis and Applications, 1992, 168(1): 89–107. 
https://doi.org/10.1016/0022-247X(92)90191-F 

[27] D.T. Haimo, C. Markett. A Representation Theory for Solutions of a Higher Order Heat Equation II. Journal of 
Mathematical Analysis and Applications, 1992, 168(2): 289–305. 
https://doi.org/10.1016/0022-247X(92)90158-A 

[28] G. Dattoli, B. Germano, P.E. Ricci. Hermite Polynomials With More Than Two Variables and Associated Bi-
Orthogonal Functions. Integral Transforms and Special Functions, 2009, 20(1): 17–22. 
https://doi.org/10.1080/10652460801933678 

[29] N. Behr, G.H.E. Duchamp, K.A. Penson. Explicit Formulae for All Higher Order Exponential Lacunary 
Generating Functions of Hermite Polynomials. Preprint, arXiv:1806.08417v1 [math-ph], 21 June 2018. 
https://doi.org/10.48550/arXiv.1806.08417 


