Chapter 2. Recalling Sequences \& Series

We recall, in a schematic way, the basic definitions about sequences and series [62].

A sequence is a function defined on the set \mathbf{N} of integers $(n \in \mathbf{N})$.

A property is said to be definitively true if it holds for all integer indices greater than a given value.

The sequence $\frac{1}{n}$ converges to zero. We write: $\frac{1}{n} \rightarrow 0$.
The sequence n diverges positively. We write: $n \rightarrow+\infty$.
The sequence $\left\{(-1)^{n}\right\}$ is indeterminate: it does not admit a limit.
The sequence $\left\{a_{n}\right\}$ converges to the limit $\ell \Leftrightarrow\left|a_{n}-\ell\right| \rightarrow 0$.
The sequence $\left\{a_{n}\right\}$ is convergent if and only if $\forall \varepsilon>0$ it results definitively that $\left|a_{n}-a_{m}\right|<\varepsilon$ (Cauchy's convergence criterion).

The sequence $\left\{a_{n}\right\}$ diverges positively $\Leftrightarrow \forall K>0$ it results definitively that $\left|a_{n}\right|>K$.

A series is the sum of the terms of a sequence: $\sum_{k=1}^{\infty} a_{k}$.
The study of series reduces to that of the sequence of partial sums: $s_{n}=\sum_{k=1}^{n} a_{k}$.

If $\left\{s_{n}\right\} \rightarrow s$ the series is convergent and its sum is s.
If $\left\{s_{n}\right\} \rightarrow+\infty$ the series diverges positively.
If $\left\{s_{n}\right\}$ does not have a limit the series is said to be indeterminate.
The series of Zeno's paradox is convergent: $\sum_{k=0}^{\infty} 1 / 2^{n}=2$.

The harmonic series is positively divergent: $\sum_{k=1}^{\infty} 1 / k=+\infty$.
The series $\sum_{k=0}^{\infty}(-1)^{k}$ is indeterminate.
If $\left\{a_{n}\right\}$ depends on $x \in(a, b)$ we have sequences or series of functions.
For example, the series of functions $\sum_{k=1}^{\infty} a_{k}(x)$ converges to $S(x)$ in (a, b) if $\forall x \in(a, b)$ we have:

$$
\left|S_{n}(x)-S(x)\right|=\left|\sum_{k=1}^{n} a_{k}(x)-S(x)\right| \rightarrow 0
$$

The convergence of this series is uniform in $[\alpha, \beta] \subset(a, b)$ if:

$$
\max _{x \in[\alpha, \beta]}\left|S_{n}(x)-S(x)\right| \rightarrow 0
$$

It is proven that the limit of a uniformly convergent sequence of continuous functions is a continuous function.

Example: consider the geometric series $\sum_{k=0}^{\infty} x^{k}$.
Recalling the equation $1-x^{n}=(1-x)\left(1+x+x^{2}+\cdots+x^{n-1}\right)$, assuming $x \neq 1$, it follows that:

$$
S_{n}(x)=1+x+x^{2}+\cdots+x^{n-1}=\frac{1-x^{n}}{1-x}
$$

Since:

$$
x^{n} \rightarrow \begin{cases}0 & \text { if }|x|<1 \\ +\infty & \text { if } x>1 \\ \text { indeterminate } & \text { if } x \leq-1\end{cases}
$$

we can conclude that:

$$
\sum_{k=0}^{\infty} x^{k}= \begin{cases}\frac{1}{1-x} & \text { if }|x|<1 \\ +\infty & \text { if } x \geq 1 \\ \text { indeterminate } & \text { if } x \leq-1\end{cases}
$$

Moreover, the convergence cannot be uniform in $[-1,1]$, but only in intervals of the type $[\alpha, \beta] \subset(-1,1)$.

