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Chapter 6. Orthogonal Polynomials

In Hilbertian spaces 𝐿2
𝑤(𝑎, 𝑏), the introduction of a basis of orthogonal

polynomials {𝑃𝑛(𝑥)} allows one to obtain, in a constructive way, the
so-called best approximation of the functions 𝑓(𝑥) of the space by a
finite linear combination of polynomials of the basis. By minimizing
the deviation max𝑥∈(𝑎,𝑏) ||𝑓(𝑥) − ∑𝑁

𝑘=0 𝑎𝑘𝑃𝑘(𝑥)|| = 𝑚𝑖𝑛, a remarkable
extension of the classical least squares method, which goes back to Carl
Friedrich Gauss, is obtained.

6.1 General Properties of
Orthogonal Polynomials

In this section, we give the simplest properties of the orthogonal
polynomials with respect to a weight 𝑤. For a more in-depth study
of the subject one can consult the classic texts.

Denoting by 𝑘𝑛 the leading coefficient of the 𝑛th polynomial 𝑃𝑛(𝑥) and
putting, as usual:

h𝑘 = ||𝑃𝑘(𝑥)||2 = ∫
𝑏

𝑎
𝑃 2

𝑘 (𝑥)𝑤(𝑥)𝑑𝑥 (6.1)

we begin by noting that given the weight 𝑤 and the interval [𝑎, 𝑏]
the orthogonal polynomials are each determined up to a multiplicative
constant (which can be arranged to make the system orthonormal).

Recurrence relation

Three consecutive orthogonal polynomial system polynomials,
associated with weight 𝑤 on the interval (𝑎, 𝑏), are related by the
following recurrence relation:

𝑃𝑛(𝑥) = (𝐴𝑛𝑥 + 𝐵𝑛)𝑃𝑛−1(𝑥) − 𝐶𝑛𝑃𝑛−2(𝑥) (𝑛 = 2, 3, ...) (6.2)
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where 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 are constants such that ∀𝑛, 𝐴𝑛 ≠ 0 and 𝐶𝑛 > 0.

Furthermore, we have:

⎧{{
⎨{{⎩

𝐴𝑛 = 𝑘𝑛
𝑘𝑛−1

, 𝐶𝑛 = 𝐴𝑛 h𝑛−1
𝐴𝑛−1 h𝑛−2

𝐵𝑛 = 𝐴𝑛 (𝑘′
𝑛

𝑘𝑛
− 𝑘′

𝑛−1
𝑘𝑛−1

)
(6.3)

Christoffel-Darboux identity

For orthogonal polynomials, associated with the weight 𝑤 on [𝑎, 𝑏], the
following Christoffel-Darboux identity holds:

1
h0

𝑃0(𝑦)𝑃0(𝑥) + 1
h1

𝑃1(𝑦)𝑃1(𝑥) + ⋯ + 1
h𝑛

𝑃𝑛(𝑦)𝑃𝑛(𝑥)

= 1
h𝑛

𝑘𝑛
𝑘𝑛+1

𝑃𝑛+1(𝑦)𝑃𝑛(𝑥) − 𝑃𝑛+1(𝑥)𝑃𝑛(𝑦)
𝑦 − 𝑥

(6.4)

Location of zeros

∀𝑛, the zeros 𝑥1, 𝑥2, … , 𝑥𝑛 of the polynomial 𝑃𝑛, belonging to the set
of polynomials orthogonal in [𝑎, 𝑏] with respect to the weight 𝑤, are all
real, distinct and internal to the interval [𝑎, 𝑏].

Separation of zeros

Two consecutive orthogonal polynomials 𝑃𝑛(𝑥) and 𝑃𝑛+1(𝑥) of the set
of orthogonal polynomials in (𝑎, 𝑏) with respect to an assigned weight
𝑤 have no common zeros.

Moreover, there exists the so-called theorem of separation of zeros.
Denoting by 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛+1 the zeros of the polynomial 𝑃𝑛+1(𝑥),
belonging to the set of polynomials orthogonal in (𝑎, 𝑏) with respect to
the weight 𝑤, in each of the open intervals (𝑥𝑘, 𝑥𝑘+1) (𝑘 = 1, 2, ..., 𝑛)
exactly one zero of 𝑃𝑛(𝑥) falls.
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6.2 The Classical Orthogonal Polynomials
The orthogonal polynomials that are most frequently encountered in
applications are those called classical orthogonal polynomials, which
are solutions of a differential equation of the hypergeometric type (see
[75]), that is, of the type:

𝜎(𝑥)𝑦″ + 𝜏(𝑥)𝑦′ + 𝜆𝑛𝑦 = 0 (6.5)

where 𝜎(𝑥) is a polynomial of degree not greater than 2, 𝜏(𝑥) is a
polynomial of degree not greater than 1 and 𝜆𝑛 denotes a constant
which is related to the other coefficients by the equation:

𝜆𝑛 = −𝑛𝜏 ′(𝑥) − 𝑛(𝑛 − 1)
2 𝜎″(𝑥) (6.6)

These polynomials, disregarding inessential linear changes in the
independent variable, can be reduced to the following:

(I) Jacobi polynomials: 𝑃 (𝛼,𝛽)
𝑛 (𝑥) (𝛼 > −1, 𝛽 > −1) orthogonal in

(−1, 1) with respect to the weight:
𝑤(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽

(II) Laguerre polynomials: 𝐿(𝛼)
𝑛 (𝑥) (𝛼 > −1) orthogonal in (0, +∞)

with respect to the weight:

𝑤(𝑥) = 𝑥𝛼𝑒−𝑥

(III) Hermite polynomials: 𝐻𝑛(𝑥) orthogonal in (−∞, +∞) with
respect to the weight:

𝑤(𝑥) = 𝑒−𝑥2

All of the above systems of polynomials constitute complete systems in
the respective spaces 𝐿2

𝑤. The main reason why the above orthogonal
polynomials are frequently used in applications is the possibility to
obtain a lot of information from them, as a consequence of the fact that
they verify the properties listed below (we remind that these properties
characterize the sets of classical orthogonal polynomials, see e.g. [31]
pp. 150 and after):
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(A) The weight 𝑤(𝑥) of the classical orthogonal polynomials satisfies
the following Pearson differential equation:

𝑤′(𝑥)
𝑤(𝑥) = 𝐷 + 𝐸𝑥

𝐴 + 𝐵𝑥 + 𝐶𝑥2 (𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = constants) (6.7)

(B) Classical orthogonal polynomials satisfy the following generalized
Rodrigues’ formula:

𝑃𝑛(𝑥) = 1
𝐾𝑛𝑤(𝑥)

𝑑𝑛

𝑑𝑥𝑛 ([𝐴 + 𝐵𝑥 + 𝐶𝑥2]𝑛 𝑤(𝑥)) (6.8)

with 𝐾𝑛 being a normalization constant which can be chosen
arbitrarily and which in the following is chosen in order to respect
the traditional standardization. In all cases (I), (II) and (III) it
is verified that:

𝑑𝑘

𝑑𝑥𝑘 ([𝐴 + 𝐵𝑥 + 𝐶𝑥2]𝑛 𝑤(𝑥)) ∀𝑘 = 0, 1, … , 𝑛 (6.9)

vanishes at the extremes of the interval under consideration. So
it is possible to prove the orthogonality of 𝑃𝑛(𝑥) with respect to
each power 𝑥𝑘 (where 𝑘 = 0, 1, … , 𝑛−1) representing 𝑃𝑛(𝑥) with
the generalized Rodrigues’ formula and performing successive
integrations by parts. The classical orthogonal polynomials
satisfy the hypergeometric differential equation (6.5) which can
be rewritten in the form:

(𝐴 + 𝐵𝑥 + 𝐶𝑥2) 𝑦″ + [𝐵 + 𝐷 + (2𝐶 + 𝐸)𝑥]𝑦′

−𝑛[(𝑛 + 1)𝐶 + 𝐸]𝑦 = 0 (6.10)

In what follows, we limit ourselves to consider only the Chebyshev
polynomials.

6.3 Chebyshev Polynomials
Starting from the identity (𝑒𝑖𝑡)𝑛 = 𝑒𝑖 𝑛𝑡, by using Euler’s formula:

(cos 𝑡 + 𝑖 sin 𝑡)𝑛 = cos(𝑛𝑡) + 𝑖 sin(𝑛𝑡) (6.11)
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and expanding the first member with Newton’s binomial formula,
we get:

𝑛
∑
𝑘=0

𝑖𝑘 (𝑛
𝑘) cos𝑛−𝑘 𝑡 sin𝑘 𝑡

=
[ 𝑛

2 ]
∑
ℎ=0

(−1)ℎ ( 𝑛
2ℎ) cos𝑛−2ℎ 𝑡 sin2ℎ 𝑡

+ 𝑖
[ 𝑛−1

2 ]
∑
ℎ=0

(−1)ℎ ( 𝑛
2ℎ + 1) cos𝑛−2ℎ−1 𝑡 sin2ℎ+1 𝑡

=
[ 𝑛

2 ]
∑
ℎ=0

(−1)ℎ ( 𝑛
2ℎ) cos𝑛−2ℎ 𝑡 (1 − cos2 𝑡)ℎ

+ 𝑖 sin 𝑡
[ 𝑛−1

2 ]
∑
ℎ=0

(−1)ℎ ( 𝑛
2ℎ + 1) cos𝑛−2ℎ−1 𝑡 (1 − cos2 𝑡)ℎ

(6.12)

Comparing Equations (6.11) and (6.12) we find:

cos(𝑛𝑡) =
[ 𝑛

2 ]
∑
ℎ=0

(−1)ℎ ( 𝑛
2ℎ) cos𝑛−2ℎ 𝑡 (1 − cos2 𝑡)ℎ (6.13)

sin(𝑛𝑡)
sin 𝑡 =

[ 𝑛−1
2 ]

∑
ℎ=0

(−1)ℎ ( 𝑛
2ℎ + 1) cos𝑛−2ℎ−1 𝑡 (1 − cos2 𝑡)ℎ (6.14)

Putting 𝑥 = cos 𝑡 in (6.13) and (6.14), we obtain two polynomials in
𝑥 of degrees 𝑛 and 𝑛 − 1 which are called, respectively, Chebyshev
polynomials (CP in short) of the first and second kind:

𝑇𝑛(𝑥) ∶= cos(𝑛 arccos𝑥) =
[ 𝑛

2 ]
∑
ℎ=0

(−1)ℎ ( 𝑛
2ℎ) 𝑥𝑛−2ℎ(1 − 𝑥2)ℎ

𝑈𝑛−1(𝑥) ∶= sin(𝑛 arccos𝑥)
sin(arccos𝑥) =

[ 𝑛−1
2 ]

∑
ℎ=0

(−1)ℎ ( 𝑛
2ℎ + 1) 𝑥𝑛−2ℎ−1(1 − 𝑥2)ℎ
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Such polynomials enjoy many important properties [71, 84] of which we
recall the most simple ones.

6.3.1 First Kind and Second Kind
Chebyshev Polynomials

Main properties of the first kind CP

The trigonometric identity:

cos((𝑛 + 1)𝑡) + cos((𝑛 − 1)𝑡) = 2 cos 𝑡 cos(𝑛𝑡)

gives the recursion:

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥)

from which, by using the initial values 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥, the
subsequent polynomials easily follow:

𝑇2(𝑥) = 2𝑥2 − 1
𝑇3(𝑥) = 4𝑥3 − 3𝑥
𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1
𝑇5(𝑥) = 16𝑥5 − 20𝑥3 + 5𝑥
𝑇6(𝑥) = 32𝑥6 − 48𝑥4 + 18𝑥2 − 1
𝑇7(𝑥) = 64𝑥7 − 112𝑥5 + 56𝑥3 − 7𝑥
𝑇8(𝑥) = 128𝑥8 − 256𝑥6 + 160𝑥4 − 32𝑥2 + 1
…

Note that:

• The leading coefficient of 𝑇𝑛(𝑥) is 2𝑛−1.
• When 𝑛 = 2𝑚 (𝑚 ∈ ℕ), 𝑇2𝑚(𝑥) is an even function of 𝑥, while

𝑇2𝑚+1(𝑥) is an odd function of 𝑥.
• ∀ 𝑛 ∈ ℕ, 𝑇𝑛(1) = 1 and 𝑇𝑛(−1) = (−1)𝑛.
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From the equation:

∫
𝜋

0
cos(𝑛𝑡) cos(𝑚𝑡) 𝑑𝑡 = 0 (if 𝑚 ≠ 𝑛)

by the change of variable 𝑡 = arccos𝑥, we find the orthogonality
property in [−1, 1] with respect to the weight function (1 − 𝑥2)−1/2:

∫
1

−1

𝑇𝑛(𝑥)𝑇𝑚(𝑥)√
1 − 𝑥2 𝑑𝑥 = 0 (if 𝑚 ≠ 𝑛)

Furthermore, it follows that:

∫
1

−1

1√
1 − 𝑥2 𝑑𝑥 = 𝜋

∫
1

−1

𝑇 2
𝑛(𝑥)√
1 − 𝑥2 𝑑𝑥 = ∫

𝜋

0
cos2(𝑛𝑡) 𝑑𝑡 = 𝜋

2 (𝑛 ∈ N)

All the 𝑛 zeros of 𝑇𝑛(𝑥) are real, simple and internal to [−1, 1]. More
precisely, they are given by:

𝑥𝑘 = cos((2𝑘 + 1)
𝑛

𝜋
2 ) (𝑘 = 0, 1, … , 𝑛 − 1)

In fact, it follows that:

|𝑇𝑛(𝑥𝑘)| = | cos(𝑛 arccos𝑥𝑘)| = ∣cos((2𝑘 + 1)𝜋
2 )∣ = 0

Main properties of the second kind CP

Similarly, the properties of the second kind Chebyshev polynomials can
be obtained, but we limit ourselves to list them here. They verify the
same recursion as the 𝑇𝑛(𝑥):

𝑈𝑛+1(𝑥) = 2𝑥𝑈𝑛(𝑥) − 𝑈𝑛−1(𝑥)

with the initial conditions 𝑈0(𝑥) = 1 and 𝑈1(𝑥) = 2𝑥. Therefore, the
first few of them are:



36 6. ORTHOGONAL POLYNOMIALS

𝑈2(𝑥) = 4𝑥2 − 1
𝑈3(𝑥) = 8𝑥3 − 4𝑥
𝑈4(𝑥) = 16𝑥4 − 12𝑥2 + 1
𝑈5(𝑥) = 32𝑥5 − 32𝑥3 + 6𝑥
𝑈6(𝑥) = 64𝑥6 − 80𝑥4 − 24𝑥2 − 1
𝑈7(𝑥) = 128𝑥7 − 192𝑥5 + 80𝑥3 − 8𝑥
𝑈8(𝑥) = 256𝑥8 − 448𝑥6 + 240𝑥4 − 40𝑥2 + 1
…

The second kind Chebyshev polynomials play an important role in
representing the powers of a 2×2 non-singular matrix [76, 81]. Extension
of this polynomial family to the multivariate case has been considered
for representing the powers of an 𝑟 × 𝑟 (𝑟 ≥ 3) non-singular matrix (see
[80, 81]).

Remark 1. Chebyshev polynomials are a particular case of the Jacobi
polynomials 𝑃 (𝛼,𝛽)

𝑛 (𝑥), which are orthogonal in the interval [−1, 1] with
respect to the weight (1 − 𝑥)𝛼(1 + 𝑥)𝛽, since:

𝑇𝑛(𝑥) = 𝑃 (−1/2,−1/2)
𝑛 (𝑥) , 𝑈𝑛(𝑥) = 𝑃 (1/2,1/2)

𝑛 (𝑥)

Therefore, properties of the Chebyshev polynomials could be deduced
in a more general framework of the hypergeometric functions.

6.3.2 Third Kind and Fourth Kind
Chebyshev Polynomials

In connection with interpolation and quadrature problems, another
couple of Chebyshev polynomials have been considered. They
correspond to different choices of weights:

𝑉𝑛(𝑥) = 𝑃 (1/2,−1/2)
𝑛 (𝑥), 𝑊𝑛(𝑥) = 𝑃 (−1/2,1/2)

𝑛 (𝑥)
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These were called the third and fourth kind Chebyshev polynomials by
Walter Gautschi [38].

The third and fourth kind Chebyshev polynomials are defined in [−1, 1]
as follows:

𝑉𝑛(𝑥) = cos[(𝑛 + 1/2) arccos𝑥]
cos[(arccos𝑥)/2]

𝑊𝑛(𝑥) = sin[(𝑛 + 1/2) arccos𝑥]
sin[(arccos𝑥)/2]

Since 𝑊𝑛(𝑥) = (−1)𝑛𝑉𝑛(−𝑥), the third kind Chebyshev polynomials
transform into those of the fourth kind by interchanging the ends of
the interval [−1, 1] and so they are not essentially different from each
other.

6.4 Non-Trigonometric Fourier Series
Taking up the case of the expansions of a function 𝑓(𝑥) in (𝑎, 𝑏) by
means of the uniformly convergent series:

𝑓(𝑥) = 𝑓0𝑢0(𝑥) + 𝑓1𝑢1(𝑥) + ⋯ + 𝑓𝑛𝑢𝑛(𝑥) + ⋯

whose Fourier coefficients are:

𝑓𝑘 = (𝑓, 𝑢𝑘)𝑤 = ∫
𝑏

𝑎
𝑓(𝑥)𝑢𝑘(𝑥)𝑤(𝑥)𝑑𝑥

it is worth to note that the Bessel inequality always holds, that is:

𝑓2
0 + 𝑓2

1 + ⋯ + 𝑓2
𝑛 + ⋯ =

∞
∑
𝑘=0

𝑓2
𝑘 ≤ ‖𝑓‖𝑤 = ∫

𝑏

𝑎
𝑓(𝑥)𝑤(𝑥)𝑑𝑥

Moreover, if the system of the 𝑢𝑘(𝑥) functions is complete, then the
extension to the 𝐿2

𝑤 space of the Pythagorean theorem, which is known
as the Parseval equality, holds:

∞
∑
𝑘=0

𝑓2
𝑘 = ‖𝑓‖𝑤 = ∫

𝑏

𝑎
𝑓(𝑥)𝑤(𝑥)𝑑𝑥
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If the system used is not complete, the convergence in quadratic mean
does not occur towards the function 𝑓(𝑥), but towards the projection
of the function 𝑓(𝑥) on the linear manifold generated by the linear
combinations of the functions of the system being used.
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