Chapter 7. Grandi (Rhodonea) Curves

The curves with polar equation $\rho=\cos (n \theta)(0 \leq \theta \leq 2 \pi)$ are also known as Grandi's roses, in honor of Guido Grandi who communicated his discovery to Gottfried Wilhelm Leibniz in 1713. Curves with polar equation $\rho=\sin (n \theta)(0 \leq \theta \leq 2 \pi)$ are equivalent to the preceding ones, up to a rotation of $\pi /(2 n)$ radians.

As can be seen in Figure 10, Grandi's roses display n petals if n is odd and $2 n$ petals if n is even. By using these polar equations it is impossible to obtain roses with $4 n+2(n \in \mathbf{N} \cup\{\mathbf{0}\})$ petals. Roses with $4 n+2$ petals can be obtained by using the Bernoulli Lemniscate and its extensions. More precisely:

- The trigonometric function $y=\sqrt{\cos 2 x}\left(-\frac{\pi}{4}+k \pi \leq x \leq \frac{\pi}{4}+k \pi\right)$ becomes the so-called Bernoulli Lemniscate $\rho=\cos ^{1 / 2}(2 \theta) \quad\left(-\frac{\pi}{4}+k \pi \leq \theta \leq \frac{\pi}{4}+k \pi\right) \quad(k \in \mathbf{N})$ that is a rose with two petals (Figure 11).
- The functions $y=\sqrt{\cos (4 n+2) x}(n>1)\left(-\frac{\pi}{4(2 n+1)}+\frac{k \pi}{2 n+1} \leq x \leq\right.$ $\left.\frac{\pi}{4(2 n+1)}+\frac{k \pi}{2 n+1}\right)$ become the polar equations $\rho=\cos ^{1 / 2}[(4 n+2) \theta]$ $\left(-\frac{\pi}{4(2 n+1)}+\frac{k \pi}{2 n+1} \leq \theta \leq \frac{\pi}{4(2 n+1)}+\frac{k \pi}{2 n+1}\right)(k \in \mathbf{N})$ which give roses with $4 n+2$ petals.

Figure 10. Rhodonea $\cos (2 \theta)$ and $\cos (5 \theta)$.

A few graphs of Rhodonea curves with fractional indices are shown in Figures 12-14.

Figure 11. Bernoulli Lemniscate.

Figure 12. Rhodonea $\cos \left(\frac{p}{q} \theta\right)$.

Figure 13. Rhodonea $\cos \left(\frac{1}{4} \theta\right)$ and $\cos \left(\frac{5}{4} \theta\right)$.

Figure 14. Rhodonea $\cos \left(\frac{1}{8} \theta\right)$ and $\cos \left(\frac{3}{8} \theta\right)$.

