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Chapter 8. Pseudo-Chebyshev Functions

Starting from the rhodonea curves of integer indices, passing from polar
to Cartesian coordinates, we find the connection with the first kind
Chebyshev polynomials. However, the rhodoneas exist even in the case
of fractional indices. This led to the idea of the existence of an analytic
theory that extends these polynomials to the case of fractional indices.
In this way, we obtain mathematical entities which, although no longer
polynomials, continue to verify some of the properties of the above-
mentioned Chebyshev polynomials and were therefore called pseudo-
Chebyshev functions (PCF in short) of the first kind.

We start by considering the pseudo-Chebyshev functions of the first
and second kind, which are an extension of these kind of Chebyshev
polynomials to the case of fractional indices. We put by definition:

𝑇𝑝
𝑞
(𝑥) = cos(𝑝

𝑞 arccos(𝑥)) (8.1)

√
1 − 𝑥2 𝑈𝑝

𝑞
(𝑥) = sin(𝑝

𝑞 arccos(𝑥)) (8.2)

where 𝑝 and 𝑞 are integers and 𝑞 ≠ 0. Note that Definitions (8.1) and
(8.2) hold even for negative indices, that is for 𝑝/𝑞 < 0, according to
the parity properties of the trigonometric functions.

Note that these functions arise naturally, extending to the fractional
indices the corresponding polynomials of the first and second kind.

8.1 Basic Properties of the First and Second
Kind PCF

We recall here only a few properties of these functions, but many others
have been proven in several recent articles [6, 23, 24, 77, 82]. The
following theorems hold:
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Theorem 8.1. The pseudo-Chebyshev functions 𝑇𝑝
𝑞
(𝑥) satisfy the

recurrence relation:

𝑇𝑝
𝑞 +1(𝑥) = 2 𝑥 𝑇𝑝

𝑞
(𝑥) − 𝑇𝑝

𝑞 −1(𝑥) (8.3)

Proof. Write Equation (8.3) in the form:

𝑇𝑝
𝑞 +1(𝑥) + 𝑇𝑝

𝑞 −1(𝑥) = 2 𝑥 𝑇𝑝
𝑞
(𝑥)

Then use Definition (8.1) and the trigonometric identity:

cos𝛼 + cos𝛽 = 2 cos(𝛼 + 𝛽
2 ) cos(𝛼 − 𝛽

2 )

Theorem 8.2. The pseudo-Chebyshev functions 𝑈𝑝
𝑞
(𝑥) satisfy the

recurrence relation:

𝑈𝑝
𝑞 +1(𝑥) = 2 𝑥 𝑈𝑝

𝑞
(𝑥) − 𝑈𝑝

𝑞 −1(𝑥) (8.4)

Proof. Write Equation (8.4) in the form:

𝑈𝑝
𝑞 +1(𝑥) + 𝑈𝑝

𝑞 −1(𝑥) = 2 𝑥 𝑈𝑝
𝑞
(𝑥)

Then use Definition (8.2) and the trigonometric identity:

sin𝛼 + sin𝛽 = 2 sin(𝛼 + 𝛽
2 ) cos(𝛼 − 𝛽

2 )

8.2 The Case of Half-Integer Degree
We now consider the case of the half-integer degree, which seems to
be the most interesting one, since the resulting pseudo-Chebyshev
functions satisfy the orthogonality properties in the interval (−1, 1)
with respect to the same weights of the corresponding Chebyshev
polynomials [24].
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Definition. For any integer 𝑘:

𝑇𝑘+ 1
2
(𝑥) = cos((𝑘 + 1

2) arccos(𝑥))

√
1 − 𝑥2 𝑈𝑘− 1

2
(𝑥) = sin((𝑘 + 1

2) arccos(𝑥))

√
1 − 𝑥2 𝑉𝑘+ 1

2
(𝑥) = cos((𝑘 + 1

2) arccos(𝑥))

𝑊𝑘+ 1
2
(𝑥) = sin((𝑘 + 1

2) arccos(𝑥))

(8.5)

Note that the above definition holds even for 𝑘 + 1/2 < 0, taking into
account the parity properties of the circular functions. We will show
that, in the case of half-integer degree, the pseudo-Chebyshev functions
satisfy not only the recursion analogues to the classical ones, but even
the orthogonality properties.

8.2.1 Orthogonality of the First and Second
Kind PCF

A few graphs of the 𝑇𝑘+ 1
2
functions are shown in Figure 15.

Theorem 8.3. The pseudo-Chebyshev functions 𝑇𝑘+1/2(𝑥) satisfy the
orthogonality property:

∫
1

−1
𝑇ℎ+ 1

2
(𝑥) 𝑇𝑘+ 1

2
(𝑥) 1√

1 − 𝑥2 𝑑𝑥 = 0 (ℎ ≠ 𝑘) (8.6)

where ℎ, 𝑘 are integers,

∫
1

−1
𝑇 2

𝑘+ 1
2
(𝑥) 1√

1 − 𝑥2 𝑑𝑥 = 𝜋
2 (8.7)

A few graphs of the 𝑈𝑘+ 1
2
functions are shown in Figure 16.
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Figure 15. 𝑇𝑘+1/2(𝑥), 𝑘 = 1 (green), 2 (red), 3 (blue), 4 (orange).

Figure 16. 𝑈𝑘+1/2(𝑥), 𝑘 = 1 (green), 2 (red), 3 (blue), 4 (orange).
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Theorem 8.4. The pseudo-Chebyshev functions 𝑈𝑘+ 1
2
(𝑥) satisfy the

orthogonality property:

∫
1

−1
𝑈ℎ+ 1

2
(𝑥) 𝑈𝑘+ 1

2
(𝑥)

√
1 − 𝑥2 𝑑𝑥 = 0 (ℎ ≠ 𝑘) (8.8)

where ℎ, 𝑘 are integers,

∫
1

−1
𝑈2

𝑘+ 1
2
(𝑥)

√
1 − 𝑥2 𝑑𝑥 = 𝜋

2 (8.9)

Proof. We prove only Theorem 8.3 since the proof of Theorem 8.4 is
similar. From the Werner formulas, we have:

∫
1

−1
cos[(ℎ + 1

2) arccos(𝑥)] cos[(𝑘 + 1
2) arccos(𝑥)] 1√

1 − 𝑥2 𝑑𝑥

= 2 ∫
𝜋/2

0
cos[(2ℎ + 1)𝑡] cos[(2𝑘 + 1)𝑡] 𝑑𝑡 = 0

and

∫
1

−1
cos2[(𝑘 + 1

2) arccos(𝑥)] 1√
1 − 𝑥2 𝑑𝑥 = 2 ∫

𝜋/2

0
cos2((2𝑘 + 1)𝑡) 𝑑𝑡 = 𝜋

2

8.3 Basic Properties of the Third and Fourth
Kind PCF

The third kind pseudo-Chebyshev functions (Figure 17) satisfy the
recurrence relation:

⎧{
⎨{⎩

𝑉𝑘+ 1
2
(𝑥) = 2 𝑥 𝑉𝑘− 1

2
(𝑥) − 𝑉𝑘− 3

2
(𝑥)

𝑉± 1
2
(𝑥) = 1

√2 (1−𝑥)
(8.10)
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Figure 17. 𝑉𝑘+1/2(𝑥), 𝑘 = 1 (grey), 2 (red), 3 (blue), 4 (orange),
5 (violet).

Figure 18. 𝑊𝑘+1/2(𝑥), 𝑘 = 1 (green), 2 (red), 3 (blue), 4 (orange),
5 (violet).
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The orthogonality property holds:

∫
1

−1
𝑉ℎ+ 1

2
(𝑥) 𝑉𝑘+ 1

2
(𝑥)

√
1 − 𝑥2 𝑑𝑥 = 0 (ℎ ≠ 𝑘) (8.11)

∫
1

−1
𝑉 2

𝑘+ 1
2
(𝑥)

√
1 − 𝑥2 𝑑𝑥 = 𝜋

2 (8.12)

The fourth kind pseudo-Chebyshev functions (Figure 18) satisfy the
recurrence relation:

⎧{
⎨{⎩

𝑊𝑘+ 1
2
(𝑥) = 2 𝑥 𝑊𝑘− 1

2
(𝑥) − 𝑊𝑘− 3

2
(𝑥)

𝑊± 1
2
(𝑥) = ±√1−𝑥

2
(8.13)

The orthogonality property holds:

∫
1

−1
𝑊ℎ+ 1

2
(𝑥) 𝑊𝑘+ 1

2
(𝑥) 1√

1 − 𝑥2 𝑑𝑥 = 0 (ℎ ≠ 𝑘) (8.14)

and furthermore:

∫
1

−1
𝑊 2

𝑘+ 1
2
(𝑥) 1√

1 − 𝑥2 𝑑𝑥 = 𝜋
2 (8.15)

Remark 2. More technical properties such as the hypergeometric
representations [93], location of zeros, differential equations, Rodrigues-
type formulas, etc. are reported in [23].
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