CaratelliD.GermanoB.GielisJ.HeM.X.NataliniP.RicciP.E.Fourier Solution of the Dirichlet Problem for the Laplace and Helmholtz Equations in Starlike Domains.
[10]
CaratelliD.GermanoB.HeM.X.RicciP.E.Solution of the Dirichlet Problem for the Laplace Equation in a General Cylinder.
[11]
CaratelliD.GielisJ.NataliniP.RicciP.E.TavkhelidzeI.The Robin Problem for the Helmholtz Equation in a Starlike Planar Domain. DOI: https://doi.org/10.1515/gmj.2011.0031
[12]
CaratelliD.GielisJ.RicciP.E.Fourier-Like Solution of the Dirichlet Problem for the Laplace Equation in k-Type Gielis Domains.
[13]
CaratelliD.GielisJ.RicciP.E.The Robin Problem for the Helmholtz Equation in a Three-Dimensional Starlike Domain.
[14]
CaratelliD.GielisJ.TavkhelidzeI.RicciP.E.Fourier-Hankel Solution of the Robin Problem for the Helmholtz Equation in Supershaped Annular Domains. DOI: https://doi.org/10.1186/1687-2770-2013-253
[15]
CaratelliD.GielisJ.TavkhelidzeI.RicciP.E.Spherical Harmonic Solution of the Robin Problem for the Helmholtz Equation in a Supershaped Shell. DOI: https://doi.org/10.4236/am.2013.41A040
CesaranoC.PinelasS.RicciP.E.The Third and Fourth Kind Pseudo-Chebyshev Polynomials of Half-Integer Degree. DOI: https://doi.org/10.3390/sym11020274
[24]
CesaranoC.RicciP.E.Orthogonality Properties of the Pseudo-Chebyshev Functions (Variations on a Chebyshev’s Theme). DOI: https://doi.org/10.3390/math7020180
ChapmanD.GielisJ.Gielis Transformations for the Audiovisual Database. Symmetry Festival 2021, Sofia, Bulgaria. Extended abstract in: Symmetry, Culture and Science, 2021.
FougerolleY.D.GribokA.FoufouS.TruchetetF.AbidiM.A.Boolean Operations With Implicit and Parametric Representation of Primitives Using R-Functions. DOI: https://doi.org/10.1109/TVCG.2005.72
GielisJ.CaratelliD.van CoevordenC.M.D.J.RicciP.E.The Common Descent of Biological Shape Description and Special Functions. In:
[44]
GielisJ.CaratelliD.FougerolleY.RicciP.E.GeratsT.A Biogeometrical Model for Corolla Fusion in Asclepiad Flowers. In:
[45]
GielisJ.CaratelliD.FougerolleY.RicciP.E.TavkelidzeI.GeratsT.Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems. DOI: https://doi.org/10.1371/journal.pone.0029324
GrahamA.W.SpitlerL.R.ForbesD.A.LiskerT.MooreB.JanzJ.LEDA 074886: A Remarkable Rectangular-Looking Galaxy.
[53]
GrammelR.Eine Verallgemeinerung der Kreis- und Hyper-belfunktionen.
[54]
GuidettiM.CaratelliD.RoystonT.J.Converging Super-Elliptic Torsional Shear Waves in a Bounded Transverse Isotropic Viscoelastic Material with Nonhomogeneous Outer Boundary. DOI: https://doi.org/10.1121/1.5134657
[55]
GuitartR.Les Coordonnées Curvilignes de Gabriel Lamé, Réprésentations des Situation Physiques et Nouveaux Objets Mathématiques. DOI: https://doi.org/10.4000/sabix.686
[56]
HaesenS.NistorA.I.VerstraelenL.On Growth and Form and Geometry I.
[57]
HalmosP.R.
[58]
HowellK.B.
[59]
HuangW.LiY.NiklasK.J.GielisJ.DingY.CaoL.ShiP.A Superellipse With Deformation and Its Application in Describing the Cross-Sectional Shapes of a Square Bamboo. DOI: https://doi.org/10.3390/sym12122073
[60]
JeffreyA.
[61]
KaganV.F.Riemann’s Geometric Ideas.
[62]
KnoppK.
[63]
KoisoM.PalmerB.Equilibria for Anisotropic Surface Energies and the Gielis Formula.
LaméG.Examen des Différentes Méthodes Employées pour Résoudre les Problèmes de Géométrie.
[67]
LenjouK.
[68]
LinS.ZhangL.ReddyG.V.P.HuiC.GielisJ.DingY.ShiP.A Geometrical Model for Testing Bilateral Symmetry of Bamboo Leaf With a Simplified Gielis Equation. DOI: https://doi.org/10.1002/ece3.2407
[69]
LucasÉ.Recherche sur Plusieurs Ouvrages de Léonarde de Pise.
RieszF.Untersuchungen über Systeme Integrierbarer Funktionen.
[84]
RivlinT.J.
[85]
Rodríguez-OliverosR.Sánchez-GilJ.A.Gold Nanostars as Thermoplasmonic Nanoparticles for Optical Heating. DOI: https://doi.org/10.1364/OE.20.000621
[86]
RudinW.
[87]
ShiP.HuangJ.G.HuiC.Grissino-MayerH.D.TardifJ.C.ZhaiL.H.WangF.S.LiB.L.Capturing Spiral Radial Growth of Conifers Using the Superellipse to Model Tree-Ring Geometric Shape. DOI: https://doi.org/10.3389/fpls.2015.00856
ShiP.RatkowskyD.A.LiY.ZhangL.LinS.GielisJ.A General Leaf Area Geometric Formula Exists for Plants – Evidence from the Simplified Gielis Equation. DOI: https://doi.org/10.3390/f9110714
SwintonJ.OchuE.MSI Turing’s Sunflower Consortium. Novel Fibonacci and Non-Fibonacci Structure in the Sunflower: Results of a Citizen Science Experiment. DOI: https://doi.org/10.1098/rsos.160091
[96]
TavkhelidzeI.CaratelliD.GielisJ.RicciP.E.RogavaM.TransiricoM.On a Geometric Model of Bodies With “Complex” Configuration and Some Movements. In:
[97]
TavkhelidzeI.CassisaC.GielisJ.RicciP.E.About “Bulky” Links, Generated by Generalized Möbius Listing’s Bodies .
[98]
ThomR.Paraboles et Catastrophes: Entretiens sur les Mathématiques, la Science et la Philosophie.